All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 105104 by bemath last updated on 26/Jul/20
limx→01−cos5(x)cos3(2x)cos3(3x)22x2?
Answered by bramlex last updated on 26/Jul/20
limx→05cos4(x)sin(x)cos3(2x)cos3(3x)+6cos2(2x)cos5(x)cos3(3x)sin(2x)+9cos2(3x)cos5(x)cos3(2x)sin(3x)44x=5+12+2744=1.▴
Answered by bobhans last updated on 26/Jul/20
cosx=1−sin2x≈1−x22limx→01−(1−x22)5(1−2x2)3(1−9x22)322x2=limx→01−(1−5x22)(1−6x2)(1−27x22)22x2=limx→01−(1−(52+6+272)x2+o(x2))22x2=limx→0(52+6+272)x2+o(x2)22x2=442(22)=1(B⊚B)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com