Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 105106 by bemath last updated on 26/Jul/20

lim_(x→0) ((sin (πcos^2 x))/(3x^2 )) ?

limx0sin(πcos2x)3x2?

Answered by bramlex last updated on 26/Jul/20

lim_(x→0) ((sin (π cos^2 x))/(3x^2 )) =   lim_(x→0) ((−2πcos xsin x. cos (πcos^2 x))/(6x))  lim_(x→0) ((−πsin (2x).cos (πcos^2 x))/(6x))  = lim_(x→0) {−πcos (πcos^2 x)}.lim_(x→0) ((sin (2x))/(6x))  = (π/3) ▲

limx0sin(πcos2x)3x2=limx02πcosxsinx.cos(πcos2x)6xlimx0πsin(2x).cos(πcos2x)6x=limx0{πcos(πcos2x)}.limx0sin(2x)6x=π3

Answered by OlafThorendsen last updated on 26/Jul/20

lim_(x→0) ((sin(π(1−(x^2 /2))^2 ))/(3x^2 ))  lim_(x→0) ((sin(π(1−x^2 )))/(3x^2 ))  lim_(x→0) ((sin(πx^2 ))/(3x^2 ))  lim_(x→0) (π/3).((sin(πx^2 ))/(πx^2 ))  lim_(X→0) (π/3).((sinX)/X) = (π/3)

limx0sin(π(1x22)2)3x2limx0sin(π(1x2))3x2limx0sin(πx2)3x2limx0π3.sin(πx2)πx2limX0π3.sinXX=π3

Answered by mathmax by abdo last updated on 26/Jul/20

let f(x) =((sin(πcos^2 x))/(3x^2 ))  we have sin(πcos^2 x) =sin(π×((1+cos(2x))/2))  =sin((π/2) +(π/2)cos(2x)) =cos((π/2)cos(2x)) ∼cos((π/2)(1−2x^2 )) =sin(πx^2 ) ⇒  f(x) ∼ ((sin(πx^2 ))/(3x^2 )) ∼((πx^2 )/(3x^2 )) =(π/3) ⇒lim_(x→0)   f(x) =(π/3)

letf(x)=sin(πcos2x)3x2wehavesin(πcos2x)=sin(π×1+cos(2x)2)=sin(π2+π2cos(2x))=cos(π2cos(2x))cos(π2(12x2))=sin(πx2)f(x)sin(πx2)3x2πx23x2=π3limx0f(x)=π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com