All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 105106 by bemath last updated on 26/Jul/20
limx→0sin(πcos2x)3x2?
Answered by bramlex last updated on 26/Jul/20
limx→0sin(πcos2x)3x2=limx→0−2πcosxsinx.cos(πcos2x)6xlimx→0−πsin(2x).cos(πcos2x)6x=limx→0{−πcos(πcos2x)}.limx→0sin(2x)6x=π3▴
Answered by OlafThorendsen last updated on 26/Jul/20
limx→0sin(π(1−x22)2)3x2limx→0sin(π(1−x2))3x2limx→0sin(πx2)3x2limx→0π3.sin(πx2)πx2limX→0π3.sinXX=π3
Answered by mathmax by abdo last updated on 26/Jul/20
letf(x)=sin(πcos2x)3x2wehavesin(πcos2x)=sin(π×1+cos(2x)2)=sin(π2+π2cos(2x))=cos(π2cos(2x))∼cos(π2(1−2x2))=sin(πx2)⇒f(x)∼sin(πx2)3x2∼πx23x2=π3⇒limx→0f(x)=π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com