Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 105112 by bemath last updated on 26/Jul/20

2(√3) sin^2 (x+((3π)/2)) + sin 2x = 0   0≤x≤2π

23sin2(x+3π2)+sin2x=00x2π

Answered by john santu last updated on 28/Jul/20

⇔ 2(√3) cos^2 (x)+ sin (2x) = 0  2cos (x) {(√3) cos x+sin x } = 0   { ((cos x = 0 →x = (π/2)+2kπ)),((tan x = −(√3) = tan ((2π)/3) →x=((2π)/3)+kπ)) :}   { ((x = (π/2))),((x = ((2π)/3) ; ((5π)/3))) :}   (JS ♠★)

23cos2(x)+sin(2x)=02cos(x){3cosx+sinx}=0{cosx=0x=π2+2kπtanx=3=tan2π3x=2π3+kπ{x=π2x=2π3;5π3(JS)

Answered by Dwaipayan Shikari last updated on 26/Jul/20

2(√3)cos^2 x+2sinxcosx=0  4cosx(((√3)/2)cosx+(1/2)sinx)=0  4cosx=0  x=(4k+1)(π/2)......(a)  or(((√3)/2)cosx+(1/2)sinx)=0  sin((π/3)+x)=0  (π/3)+x=kπ  x=kπ±(π/3)   { ((x=(π/2))),((x=((2π)/3),((5π)/3))) :}

23cos2x+2sinxcosx=04cosx(32cosx+12sinx)=04cosx=0x=(4k+1)π2......(a)or(32cosx+12sinx)=0sin(π3+x)=0π3+x=kπx=kπ±π3{x=π2x=2π3,5π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com