Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105132 by mohammad17 last updated on 26/Jul/20

Answered by Dwaipayan Shikari last updated on 26/Jul/20

1)∫5^((x^2 +6)) (x+3)dx  =(1/2)∫5^u du        {u=x^2 +6x   (du/dx)=2x+6  =(1/2) (5^u /(log5))+C=(1/(2log5))5^(x^2 +6x) +C  2)∫e^x cosxdx=I  =e^x sinx−∫e^x sinx  =e^x sinx+e^x cosx−∫e^x cosx=I  2I=e^x (sinx+cosx)  I=(e^x /2)(sinx+cosx)+C

1)5(x2+6)(x+3)dx=125udu{u=x2+6xdudx=2x+6=125ulog5+C=12log55x2+6x+C2)excosxdx=I=exsinxexsinx=exsinx+excosxexcosx=I2I=ex(sinx+cosx)I=ex2(sinx+cosx)+C

Answered by Dwaipayan Shikari last updated on 26/Jul/20

b)lim_(x→0) ((tanx)/x)=((sinx)/x).(1/(cosx))=(x/x).1=1    as sinx→x

b)limx0tanxx=sinxx.1cosx=xx.1=1assinxx

Answered by Dwaipayan Shikari last updated on 26/Jul/20

xy+y+1=x  (dy/dx)x+y+(dy/dx)=1  (dy/dx)=((1−y)/(1+x))  2)xy=1  logx+logy=0  (1/x)+(1/y) (dy/dx)=0  (dy/dx)=−(y/x)=−(1/x^2 )

xy+y+1=xdydxx+y+dydx=1dydx=1y1+x2)xy=1logx+logy=01x+1ydydx=0dydx=yx=1x2

Answered by Dwaipayan Shikari last updated on 26/Jul/20

a)lim_(x→0) ((e^x +e^(−x) −2)/(1−cos2x))=lim_(x→0) ((e^x −e^(−x) )/(2sin2x))=((e^(2x) −1)/(2e^x sin2x))                                                                     =(1/(4x)).((e^(2x) −1)/e^x )=(1/2)

a)limx0ex+ex21cos2x=limx0exex2sin2x=e2x12exsin2x=14x.e2x1ex=12

Answered by Dwaipayan Shikari last updated on 26/Jul/20

(d/dx)(sin((√(1+cos10x))))=(d/dx)(sin((√2)cos5x)=5(√2)cos((√2)cos5x)(−sin5x)

ddx(sin(1+cos10x))=ddx(sin(2cos5x)=52cos(2cos5x)(sin5x)

Answered by mathmax by abdo last updated on 26/Jul/20

1)let f(x) =sin((√(1+cos(10x)))) ⇒f(x) =sin((√2)cos(5x)) ⇒  f^′ (x) =−5(√2)sin(5x)cos((√2)cos(5x))

1)letf(x)=sin(1+cos(10x))f(x)=sin(2cos(5x))f(x)=52sin(5x)cos(2cos(5x))

Answered by mathmax by abdo last updated on 26/Jul/20

2) let g(x) = 3 arcsin((x/3))+(√(9−x^2 )) ⇒  g^′ (x) =3×(1/(3(√(1−(x^2 /9))))) +((−2x)/(2(√(9−x^2 )))) =(3/(√(9−x^2 ))) −(x/(√(9−x^2 ))) =((3−x)/(√(9−x^2 )))

2)letg(x)=3arcsin(x3)+9x2g(x)=3×131x29+2x29x2=39x2x9x2=3x9x2

Answered by mathmax by abdo last updated on 26/Jul/20

I = ∫ 5^(x^2 +6x) (x+3)dx  changement x+3 =t give I =∫ 5^((t−3)^2  +6(t−3))  t dt  =∫ t  5^(t^2 −6t +9+6t−18)  dt =∫ t 5^(t^2 −9)  dt  =∫ t e^(ln5(t^2 −9))  dt  =(1/(2ln5)) e^(ln5(t^2 −9))  +C =(1/(2ln5))×5^(t^2 −9)  +c =(1/(2ln5))×5^((x+3)^2 −9)  +C

I=5x2+6x(x+3)dxchangementx+3=tgiveI=5(t3)2+6(t3)tdt=t5t26t+9+6t18dt=t5t29dt=teln5(t29)dt=12ln5eln5(t29)+C=12ln5×5t29+c=12ln5×5(x+3)29+C

Answered by 1549442205PVT last updated on 26/Jul/20

3a)Lim_(x→0) ((e^x +e^(−x) −2)/(1−cos(2x)))=Lim_(x→0) ((e^x −e^(−x) )/(2sin(2x)))=  =Lim_(x→0) ((e^x +e^x )/(4cos2x))=(2/4)=(1/2)  b)Lim_(x→0) ((tanx)/x)=Lim_(x→0) ((sinx)/x)×Lim_(x→0) (1/(cosx))=1×1=1

3a)Limx0ex+ex21cos(2x)=Limx0exex2sin(2x)==Limx0ex+ex4cos2x=24=12b)Limx0tanxx=Limx0sinxx×Limx01cosx=1×1=1

Answered by 1549442205PVT last updated on 26/Jul/20

1a)Set y=sin(√(1+cos(10x)))⇒y^2 =sin^2 (√(1+cos(10x)))  Derivative both two sides of above  equation by x we get  2y.y′=2sin(√(1+cos(10x))).((√(1+cos(10x))))′  =2sin(√(1+cos(10x))).(((1+cos(10x))′)/(2(√(1+cos(10x)))))  =2sin(√(1+cos(10x))).((−10sin(10x))/(2(√(1+cos(10x)))))  =−10sin(√(1+cos(10x))).((sin(10x))/(√(1+cos(10x))))  ⇒(dy/dx)=y′=((−10sin(√(1+cos(10x))).((sin(10x))/(√(1+cos(10x)))))/(2y))  =−((5sin(10x))/(2(√(1+cos(10x)))))=((−5sin(10x))/(2(√(2cos^2 (5x)))))  =((−5sin5xcos5x)/((√(2 )) ∣cos5x∣))= { ((((−5(√2))/2)sin5x if x∈(((−π+4kπ)/(10));((π+4kπ)/(10))))),((((5(√2))/2)sin5x if x∈([((π+4kπ)/(10));((3π+4kπ)/(10))))) :}  1b)Set y=3sin^(−1) ((x/3))+(√(9−x^2 ))   y′=(3/(√(1−(x^2 /9))))×(1/3)+((−x)/(√(9−x^2 )))=((3−x)/(√(9−x^2 )))

1a)Sety=sin1+cos(10x)y2=sin21+cos(10x)Derivativebothtwosidesofaboveequationbyxweget2y.y=2sin1+cos(10x).(1+cos(10x))=2sin1+cos(10x).(1+cos(10x))21+cos(10x)=2sin1+cos(10x).10sin(10x)21+cos(10x)=10sin1+cos(10x).sin(10x)1+cos(10x)dydx=y=10sin1+cos(10x).sin(10x)1+cos(10x)2y=5sin(10x)21+cos(10x)=5sin(10x)22cos2(5x)=5sin5xcos5x2cos5x={522sin5xifx(π+4kπ10;π+4kπ10)522sin5xifx([π+4kπ10;3π+4kπ10)1b)Sety=3sin1(x3)+9x2y=31x29×13+x9x2=3x9x2

Answered by 1549442205PVT last updated on 26/Jul/20

II−2)F=∫e^x cosxdx=∫cos xde^x =e^x cos x+∫e^x sinxdx  =e^x cosx+∫sinxde^x =e^x cosx+e^x sinx−∫e^x cosxdx  F=e^x (cosx+sinx)−F⇒2F=e^x (cosx+sinx)  ⇒F=((e^x (cosx+sinx))/2)+C  II−1)∫5^(x^2 +6x) (x+3)=(1/2)∫5^(x^2 +6x) d(x^2 +6x)  =(5^(x^2 +6x) /(2ln5))+C

II2)F=excosxdx=cosxdex=excosx+exsinxdx=excosx+sinxdex=excosx+exsinxexcosxdxF=ex(cosx+sinx)F2F=ex(cosx+sinx)F=ex(cosx+sinx)2+CII1)5x2+6x(x+3)=125x2+6xd(x2+6x)=5x2+6x2ln5+C

Answered by 1549442205PVT last updated on 26/Jul/20

4a)xy+y+1=x⇔y(x+1)+1=x⇒y=((x−1)/(x+1))=1−(2/(x+1))  y′=(2/((x+1)^2 ))  b)xy=1⇒y=(1/x)⇒y′=−(1/x^2 )

4a)xy+y+1=xy(x+1)+1=xy=x1x+1=12x+1y=2(x+1)2b)xy=1y=1xy=1x2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com