Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 105158 by bemath last updated on 26/Jul/20

 { ((xy+x+y = 20)),((x^2 +y^2  = 40)) :}find x and y

{xy+x+y=20x2+y2=40findxandy

Answered by Dwaipayan Shikari last updated on 26/Jul/20

xy=20−(x+y)  x^2 +y^2 +2xy=(x+y)^2   40+40−2(x+y)=(x+y)^2   (x+y)^2 +2(x+y)−80=0  x+y=((−2±(√(4+320)))/2)=8 or −10  (x+y)^2 −2xy=x^2 +y^2   64−2xy=40  xy=12  (x+y)^2 −4xy=(x−y)^2   16=(x−y)^2   x−y=±4  and x+y=8 or −10   { ((x=6,2)),((y=2,6)) :}

xy=20(x+y)x2+y2+2xy=(x+y)240+402(x+y)=(x+y)2(x+y)2+2(x+y)80=0x+y=2±4+3202=8or10(x+y)22xy=x2+y2642xy=40xy=12(x+y)24xy=(xy)216=(xy)2xy=±4andx+y=8or10{x=6,2y=2,6

Answered by bramlex last updated on 26/Jul/20

⇒(x+y)^2 −2xy = 40  ⇒x+y = 20−xy   ⇒(20−xy)^2 −2xy = 40  let xy = m ⇒ (20−m)^2 −2m =40  400−40m+m^2 −2m−40=0  m^2 −42m+360 = 0  m = ((42 ± (√(324)))/2) = ((42±18)/2)   m = 21±9 → { ((m_1 = 30)),((m_2  = 12)) :}  for m_1  = xy = 30→x+y = −10  ⇒x(−10−x)= 30 ; x^2 +10x+30=0  x_(1,2)  = ((−10±2i(√5))/2) = −5 ± i(√5)  y_(1,2)  = −10+5∓i(√5) = −5∓i(√5)  for m_2 = xy = 12→x+y = 8  ⇒x(8−x) = 12 ; x^2 −8x+12 = 0  x_(3,4)  = ((8±4)/2) = 4±2→ { ((x_3  = 6)),((x_4  = 2)) :}    y_(3,4)  = 4∓2 → { ((y_3  = 2)),((y_4  = 6)) :}

(x+y)22xy=40x+y=20xy(20xy)22xy=40letxy=m(20m)22m=4040040m+m22m40=0m242m+360=0m=42±3242=42±182m=21±9{m1=30m2=12form1=xy=30x+y=10x(10x)=30;x2+10x+30=0x1,2=10±2i52=5±i5y1,2=10+5i5=5i5form2=xy=12x+y=8x(8x)=12;x28x+12=0x3,4=8±42=4±2{x3=6x4=2y3,4=42{y3=2y4=6

Answered by behi83417@gmail.com last updated on 26/Jul/20

x+y=p,xy=q  ⇒ { ((p+q=20)),((p^2 −2q=40⇒p^2 −2(20−p)=40)) :}  ⇒p^2 +2p+1=81⇒p+1=±9   { ((p=8,−10)),((q=12,30)) :}  ⇒z^2 −8z+12=0⇒z=2,6⇒(x,y)=(2,6)  ⇒z^2 +10z+30=0⇒z=((−10±(√(100−120)))/2)  ⇒z=−5±i(√5)⇒(x,y)=(−5+i(√5),−5−i(√5)) ■

x+y=p,xy=q{p+q=20p22q=40p22(20p)=40p2+2p+1=81p+1=±9{p=8,10q=12,30z28z+12=0z=2,6(x,y)=(2,6)z2+10z+30=0z=10±1001202z=5±i5(x,y)=(5+i5,5i5)

Answered by mathmax by abdo last updated on 26/Jul/20

let x+y =u and xy =v ⇒ { ((u+v =20)),((u^2 −2v =40 ⇒)) :}   { ((u =20−v)),(((20−v)^2 −2v =40)) :}  (20−v)^2 −2v =40 ⇒400−40v +v^2 −2v−40 =0 ⇒  v^2 −42v+360 =0  Δ^′  =21^2 −360 =441−360 =81  ⇒v_1 =21+9 =20 and v_2 =21−9 =12  we have u =20−v ⇒u =0 or u =8  for v =20 we get u =0 ⇒ { ((x+y =0)),((xy =20)) :}  ⇒ { ((y=−x)),((−x^2  =20 (impossible))) :}  for v =12 ⇒u =8  ⇒ { ((x+y =8)),((xy =12)) :}  x and y are solution of t^2 −8t +12 =0  Δ^′  =4^2 −12 =4 ⇒t_1 =4+2 =6 and t_2 =4−2 =2 ⇒  (x,y) =(6,2) or (x,y) =(2,6)(system is symetric)

letx+y=uandxy=v{u+v=20u22v=40{u=20v(20v)22v=40(20v)22v=4040040v+v22v40=0v242v+360=0Δ=212360=441360=81v1=21+9=20andv2=219=12wehaveu=20vu=0oru=8forv=20wegetu=0{x+y=0xy=20{y=xx2=20(impossible)forv=12u=8{x+y=8xy=12xandyaresolutionoft28t+12=0Δ=4212=4t1=4+2=6andt2=42=2(x,y)=(6,2)or(x,y)=(2,6)(systemissymetric)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com