Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 105163 by bemath last updated on 26/Jul/20

x^2 y′′+xy′−y=(1/(1+x^2 ))

x2y+xyy=11+x2

Answered by bramlex last updated on 27/Jul/20

we solve homogenous equation  This is an Euler−Cauchy   y=x^n → { ((y′=nx^(n−1) )),((y′′=(n^2 −n)x^(n−2) )) :}  ⇒x^2 (n^2 −n)x^(n−2) +x(nx^(n−1) )−x^n =0  n^2 −n+n−1=0 →n = ±1  y_h  = C_1 x+(C_2 /x)  let y_1  = x ; y_2 = x^(−1)   → { ((y_1 ^′  = 1)),((y_2 ′=−x^(−2) )) :} ⇒ W(y_1 ,y_2 )= determinant (((x       x^(−1) )),((1    −x^(−2) )))=−2x^(−1)   u_1 = −∫((x^(−1) .(1/(x^2 (x^2 +1))))/(−2x^(−1) )) dx   u_1 =∫(1/2)((1/x^2 )−(1/(1+x^2 ))) dx  u_1 = −(1/(2x))−(1/2)tan^(−1) (x)  u_2 = ∫((x.(1/(x^2 (1+x^2 ))))/(−2x^(−1) )) dx  u_2 = ∫(( −1)/(2(1+x^2 ))) dx = −(1/2)tan^(−1) (x)  particular solution   y_p  = y_1 u_1 +y_2 u_2   y_p  = x(−(1/(2x))−(1/2)tan^(−1) (x))+(1/x)(−(1/2)tan^(−1) (x))  y_p = −(1/2)−(x/2) tan^(−1) (x) −(1/(2x))tan^(−1) (x)  General solution   y_G  = C_1 x+(C_2 /x)−(x/2) tan^(−1) (x)−(1/(2x))tan^(−1) (x)−(1/2)  ★▼◊

wesolvehomogenousequationThisisanEulerCauchyy=xn{y=nxn1y=(n2n)xn2x2(n2n)xn2+x(nxn1)xn=0n2n+n1=0n=±1yh=C1x+C2xlety1=x;y2=x1{y1=1y2=x2W(y1,y2)=|xx11x2|=2x1u1=x1.1x2(x2+1)2x1dxu1=12(1x211+x2)dxu1=12x12tan1(x)u2=x.1x2(1+x2)2x1dxu2=12(1+x2)dx=12tan1(x)particularsolutionyp=y1u1+y2u2yp=x(12x12tan1(x))+1x(12tan1(x))yp=12x2tan1(x)12xtan1(x)GeneralsolutionyG=C1x+C2xx2tan1(x)12xtan1(x)12\blacktrinagledown

Answered by mathmax by abdo last updated on 26/Jul/20

x^2 y^(′′)  +xy^′ −y =(1/(1+x^2 ))  h→x^2 y^((2))  +xy^((1)) −y =0 let y =x^m  ⇒y^′  =mx^(m−1)  and y^((2))  =m(m−1)x^(m−2)   e⇒m(m−1)x^m +mx^m −x^m  =0 ⇒(m^2 −m+m−1)x^m  =0 ⇒  m^2 −1=0 ⇒m =+^− 1 ⇒y =αx +(β/x) =αu_1  +β u_2   W(u_1  ,u_2 ) = determinant (((x          (1/x))),((1          −(1/x^2 ))))=−(1/x)−(1/x) =−(2/x) ≠0  W_1 = determinant (((o            (1/x))),(((1/(1+x^2 ))      −(1/x^2 ))))=−(1/(x(1+x^2 )))  W_2 = determinant (((x            0)),((1             (1/(1+x^2 )))))=(x/(1+x^2 ))  v_1 =∫ (w_1 /w)dx =−∫  (1/(x(1+x^2 )))×(((−x)/2))dx =(1/2) ∫  (dx/((1+x^2 )))=(1/2)arctanx  =∫ (w_2 /w)dx =∫  (x/(1+x^2 ))×(−(x/2))dx =−(1/2)∫ (x^2 /(1+x^2 ))dx  =−(1/2)∫((1+x^2 −1)/(1+x^2 ))dx =−(x/2) +(1/2)arctanx ⇒  y_p =u_1 v_1  +u_2 v_2 =(x/2)arctanx+(1/x)(−(x/2) +(1/2) arctanx)  =(x/2) arctanx−(1/2) +(1/(2x)) arctanx =(1/2)(x+(1/x))arctanx−(1/2)  the general solution is   y =αx +βx^(−1)  +(1/2)(x+(1/x))arctanx −(1/2)

x2y+xyy=11+x2hx2y(2)+xy(1)y=0lety=xmy=mxm1andy(2)=m(m1)xm2em(m1)xm+mxmxm=0(m2m+m1)xm=0m21=0m=+1y=αx+βx=αu1+βu2W(u1,u2)=|x1x11x2|=1x1x=2x0W1=|o1x11+x21x2|=1x(1+x2)W2=|x0111+x2|=x1+x2v1=w1wdx=1x(1+x2)×(x2)dx=12dx(1+x2)=12arctanx=w2wdx=x1+x2×(x2)dx=12x21+x2dx=121+x211+x2dx=x2+12arctanxyp=u1v1+u2v2=x2arctanx+1x(x2+12arctanx)=x2arctanx12+12xarctanx=12(x+1x)arctanx12thegeneralsolutionisy=αx+βx1+12(x+1x)arctanx12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com