Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105230 by mathmax by abdo last updated on 27/Jul/20

calculate ∫_1 ^(+∞) (dx/((x^2 +1)^2 (x^2  +4)^2 ))

calculate1+dx(x2+1)2(x2+4)2

Answered by 1549442205PVT last updated on 27/Jul/20

F=∫[(1/4)((1/x^2 )−(1/(x^2 +4)))]^2 dx  16F=∫[(1/x^4 )+(1/((x^2 +4)^2 ))−(2/(x^2 (x^2 +4)))]dx  =∫(dx/x^4 )+∫((1/(2(x^2 +4)))−(1/(2x^2 )))dx+∫ (dx/((x^2 +4)^2 ))  =−(1/(3x^3 ))+(1/(2x))+(1/2)×(1/2)tan^(−1) ((x/2))+I_2   =−(1/(3x^3 ))+(1/(2x))+(1/4)tan^(−1) ((x/2))+(1/(2.4)).(x/((x^2 +4)))+(1/4).(1/2).(1/2)tan^(−1) ((x/2))  =−(1/(3x^3 ))+(1/(2x))+(x/(8(x^2 +4)))+(5/(16))tan^(−1) ((x/2))  F=(1/(16)){−(1/(3x^3 ))+(1/(2x))+(x/(8(x^2 +4)))+(5/(16))tan^(−1) ((x/2))}  I= ∫_1 ^(+∞) (dx/((x^2 +1)^2 (x^2  +4)^2 ))=F(+∞)−F(1)  =(1/(16)){(5/(16))×(𝛑/2)−[((23)/(120))+(5/(16))tan^(−1) ((1/2))]}

F=[14(1x21x2+4)]2dx16F=[1x4+1(x2+4)22x2(x2+4)]dx=dxx4+(12(x2+4)12x2)dx+dx(x2+4)2=13x3+12x+12×12tan1(x2)+I2=13x3+12x+14tan1(x2)+12.4.x(x2+4)+14.12.12tan1(x2)=13x3+12x+x8(x2+4)+516tan1(x2)F=116{13x3+12x+x8(x2+4)+516tan1(x2)}I=1+dx(x2+1)2(x2+4)2=F(+)F(1)=116{516×π2[23120+516tan1(12)]}

Commented by abdomsup last updated on 28/Jul/20

thank you sir

thankyousir

Commented by 1549442205PVT last updated on 28/Jul/20

Thank,you are welcome.

Thank,youarewelcome.

Answered by mathmax by abdo last updated on 29/Jul/20

I =∫_1 ^(+∞)  (dx/((x^2 +1)^2 (x^2  +4)^2 ))  we have F(x)= (1/((x^2 +1)^2 (x^2  +4)^2 )) =(1/9)((1/(x^2  +1))−(1/(x^2  +4)))^2   =(1/9){  (1/((x^2  +1)^2 )) −(2/((x^2  +1)(x^2  +4))) +(1/((x^2  +4)^2 ))} ⇒  9F(x) =(1/((x^2  +1)^2 )) −(2/3)((1/(x^2  +1))−(1/(x^2  +4)))+(1/((x^2 +4)^2 ))  =(1/((x^2 +1)^2 ))−(2/(3(x^2  +1))) +(2/(3(x^2  +4))) +(1/((x^2  +4)^2 )) ⇒  9 ∫_1 ^∞  F(x) =∫_1 ^∞  (dx/((1+x^2 )^2 ))−(2/3)∫_1 ^∞  (dx/(1+x^2 )) +(2/3)∫_1 ^∞  (dx/(x^2  +4)) +∫_1 ^∞  (dx/((x^2  +4)^2 ))  we have ∫_1 ^∞  (dx/((1+x^2 )^2 )) =_(x=tant)    ∫_(π/4) ^(π/2)   (((1+tan^2 t))/((1+tan^2 t)^2 ))dt  =∫_(π/4) ^(π/2)  cos^2 t dt =(1/2)∫_(π/4) ^(π/2) (1+cos(2t))dt =(π/8) +(1/4)[sin(2t)]_(π/4) ^(π/2)   =(π/8) −(1/4)  and ∫_1 ^∞  (dx/(1+x^2 )) =[arctanx]_1 ^∞  =(π/2)−(π/4) =(π/4)  ∫_1 ^∞  (dx/(x^2  +4)) =_(x=2t)    ∫_(1/2) ^∞  ((2dt)/(4(1+t^2 ))) =(1/2)((π/2)−arctan((1/2)))  =(π/4) −(1/2)((π/2)−arctan2) =((arctan2)/2)  ∫_1 ^∞  (dx/((x^2  +4)^2 )) =_(x=2t)    ∫_(1/2) ^∞  ((2dt)/(16(t^2  +1)^2 )) =(1/8) ∫_(1/2) ^∞  (dt/((1+t^2 )^2 ))  =_(t=tanu)      (1/8) ∫_(arctan((1/2))) ^(π/2)  ((1+tan^2 u)/((1+tan^2 u)^2 ))du  =(1/8)∫_(arctan((1/2))) ^(π/2)  ((1+cos(2u))/2) du =(1/(16))∫_(arctan((1/2))) ^(π/2) (1+cos(2u)du  =(1/(16))((π/2)−arctan((1/2)))+(1/(32))[sin(2u)]_(...) ^(...)   =((arctan2)/(16)) +(1/(32))(−sin(2arctan((1/2)))  so the value of I is known

I=1+dx(x2+1)2(x2+4)2wehaveF(x)=1(x2+1)2(x2+4)2=19(1x2+11x2+4)2=19{1(x2+1)22(x2+1)(x2+4)+1(x2+4)2}9F(x)=1(x2+1)223(1x2+11x2+4)+1(x2+4)2=1(x2+1)223(x2+1)+23(x2+4)+1(x2+4)291F(x)=1dx(1+x2)2231dx1+x2+231dxx2+4+1dx(x2+4)2wehave1dx(1+x2)2=x=tantπ4π2(1+tan2t)(1+tan2t)2dt=π4π2cos2tdt=12π4π2(1+cos(2t))dt=π8+14[sin(2t)]π4π2=π814and1dx1+x2=[arctanx]1=π2π4=π41dxx2+4=x=2t122dt4(1+t2)=12(π2arctan(12))=π412(π2arctan2)=arctan221dx(x2+4)2=x=2t122dt16(t2+1)2=1812dt(1+t2)2=t=tanu18arctan(12)π21+tan2u(1+tan2u)2du=18arctan(12)π21+cos(2u)2du=116arctan(12)π2(1+cos(2u)du=116(π2arctan(12))+132[sin(2u)]......=arctan216+132(sin(2arctan(12))sothevalueofIisknown

Terms of Service

Privacy Policy

Contact: info@tinkutara.com