All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 105231 by mathmax by abdo last updated on 27/Jul/20
calculate∫0+∞2x2−1(x2+x+1)2(x2−x+1)2dx
Answered by 1549442205PVT last updated on 27/Jul/20
F=12∫4x2(x2+x+1)2(x2−x+1)2dx−∫dx(x2+x+1)2(x2−x+1)2=∫(A)+∫(B)wehaveB=1(x2+x+1)2(x2−x+1)2=[12(x+1(x2+x+1)−x−1(x2−x+1))]2=x2+2x+14(x2+x+1)2+x2−2x+14(x2−x+1)2−2x2−24(x2+x+1)(x2−x+1)=14(x2+x+1)+x4(x2+x+1)2+14(x2−x+1)+−x4(x2−x+1)2+2x+14(x2+x+1)−2x−14(x2−x+1)2x+24(x2+x+1)−2x−24(x2−x+1)+x4(x2+x+1)2+−x4(x2−x+1)2(set{x2+x+1=ux2−x+1=v)4B=xu2−xv2+2x+2u−2x−2vA=12(1x2−x+1−1x2+x+1)2=(1(x2−x+1)2+1(x2+x+1)2−2(x2+x+1)(x2−x+1))dx2A=1(x2−x+1)2+1(x2+x+1)2+(x−1x2−x+1−x+1x2+x+1)=1u2+1v2+x−1v−x+1u⇒4A=2u2+2v2+2x−2v−2x+2u.Hence,4F=4A−4B=−x−2u2+x+2v2−4x+1)u+4(x−1)v4F=∫(−x−2(x2+x+1)2+x+2(x2−x+1)2−4x+1)x2+x+1+4(x−1)x2−x+1)dxWehave:∫dxx2+x+1=∫d(x+12)(x+12)2+(32)2=23tan−1(x+1232)=23tan−1(2x+13)(as∫dx(x2+a2)=1atan−1(xa))Consequently,M=∫x−2(x2+x+1)2dx=12∫2x+1(x2+x+1)2−52∫dx(x2+x+1)2=12∫d(x2+x+1)(x2+x+1)2−32I2=−12(x2+x+1)2+12I2N=∫x+2(x2−x+1)2dx=12∫2x−1(x2−x+1)2dx+52∫dx(x2−x+1)2=−12(x2−x+1)2+52.J2P=∫x+1x2+x+1dx=12∫2x+1x2+x+1dx+12∫dxx2+x+1=12ln(x2+x+1)+13tan−1(2x+13)Q=∫x−1x2−x+1dx=12ln(x2−x+1)−13tan−1(2x−13)Wehave:I2=∫dt(t2+a2)2(witht=x+12Applycurrentformular:In=12a2(n−1).t(t2+a2)n−1+1a2.2n−32n−2.In−1wegetI2=23.x+12x2+x+1+43.12∫d(x+12)(x+12)2+(32)2=2x+13(x2+x+1)+.433tan−1(2x+13).Similarly,J2=2x−13(x2−x+1)+433tan−1(2x−13)Finally,4F=−M+N−4P+4Q=12(x2+x+1)−12(x2−x+1)+52{2x+13(x2+x+1)+.433tan−1(2x+13)+[2x−13(x2−x+1)+433tan−1(2x−13)]}−2ln(x2+x+1)+2ln(x2−x+1)−43tan−1(2x+13)−43tan−1(2x−13)=10x3+2x(x2+x+1)(x2−x+1)+2lnx2−x+1x2+x+1−233[tan−1(2x−13)+tan−1(2x+13)]Itiseasytoseethat4F(0)=04F(+∞)=−233(π2+π2)=−2π33Therefore,∫0+∞2x2−1(x2+x+1)2(x2−x+1)2dx=−2π33
Commented by abdomathmax last updated on 27/Jul/20
thankyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com