Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105231 by mathmax by abdo last updated on 27/Jul/20

calculate ∫_0 ^(+∞)  ((2x^2 −1)/((x^2 +x+1)^2 (x^2 −x+1)^2 ))dx

calculate0+2x21(x2+x+1)2(x2x+1)2dx

Answered by 1549442205PVT last updated on 27/Jul/20

  F=(1/2)∫((4x^2 )/((x^2 +x+1)^2 (x^2 −x+1)^2 ))dx−∫(dx/((x^2 +x+1)^2 (x^2 −x+1)^2 ))=∫(A)+∫(B)  we have B= (1/((x^2 +x+1)^2 (x^2 −x+1)^2 ))=[(1/2)(((x+1)/((x^2 +x+1)))−((x−1)/((x^2 −x+1))))]^2 =((x^2 +2x+1)/(4(x^2 +x+1)^2 ))+((x^2 −2x+1)/(4(x^2 −x+1)^2 ))−((2x^2 −2)/(4(x^2 +x+1)(x^2 −x+1)))  =(1/(4(x^2 +x+1)))+(x/(4(x^2 +x+1)^2 ))+(1/(4(x^2 −x+1)))+((−x)/(4(x^2 −x+1)^2 ))+((2x+1)/(4(x^2 +x+1)))−((2x−1)/(4(x^2 −x+1)))  ((2x+2)/(4(x^2 +x+1)))−((2x−2)/(4(x^2 −x+1)))+(x/(4(x^2 +x+1)^2 ))+((−x)/(4(x^2 −x+1)^2 ))(set  { ((x^2 +x+1=u)),((x^2 −x+1=v)) :} )  4B=(x/u^2 )−(x/v^2 )+((2x+2)/u)−((2x−2)/v)  A=(1/2)((1/(x^2 −x+1))−(1/(x^2 +x+1)))^2 =((1/((x^2 −x+1)^2 ))+(1/((x^2 +x+1)^2 ))−(2/((x^2 +x+1)(x^2 −x+1))))dx  2A=(1/((x^2 −x+1)^2 ))+(1/((x^2 +x+1)^2 ))+(((x−1)/(x^2 −x+1))−((x+1)/(x^2 +x+1)))  =(1/u^2 )+(1/v^2 )+((x−1)/v)−((x+1)/u)  ⇒4A=(2/u^2 )+(2/v^2 )+((2x−2)/v)−((2x+2)/u).Hence,  4F=4A−4B=−((x−2)/u^2 )+((x+2)/v^2 )−((4x+1))/u)+((4(x−1))/v)  4F=∫(−((x−2)/((x^2 +x+1)^2 ))+((x+2)/((x^2 −x+1)^2 ))−((4x+1))/(x^2 +x+1))+((4(x−1))/(x^2 −x+1)))dx  We have:∫(dx/(x^2 +x+1))=∫((d(x+(1/2)))/((x+(1/2))^2 +(((√3)/2))^2 ))=(2/(√3))tan^(−1) (((x+(1/2))/((√3)/2)))  =(2/(√3))tan^(−1) (((2x+1)/(√3)))(as ∫(dx/((x^2 +a^2 )))=(1/a)tan^(−1) ((x/a)))  Consequently,  M=∫((x−2)/((x^2 +x+1)^2 ))dx=(1/2)∫((2x+1)/((x^2 +x+1)^2 ))−(5/2)∫(dx/((x^2 +x+1)^2 ))  =(1/2)∫((d(x^2 +x+1))/((x^2 +x+1)^2 ))−(3/2)I_2 =−(1/(2(x^2 +x+1)^2 ))+(1/2)I_2   N=∫((x+2)/((x^2 −x+1)^2 ))dx=(1/2)∫((2x−1)/((x^2 −x+1)^2 ))dx  +(5/2)∫(dx/((x^2 −x+1)^2 ))=−(1/(2(x^2 −x+1)^2 ))+(5/2).J_2   P=∫((x+1)/(x^2 +x+1))dx=(1/2)∫((2x+1)/(x^2 +x+1))dx+(1/2)∫(dx/(x^2 +x+1))  =(1/2)ln(x^2 +x+1)+(1/(√3))tan^(−1) (((2x+1)/(√3)))  Q=∫((x−1)/(x^2 −x+1))dx=(1/2)ln(x^2 −x+1)−(1/(√3))tan^(−1) (((2x−1)/(√3)))  We have:I_2 =∫(dt/((t^2 +a^2 )^2 ))(with t=x+(1/2)  Apply current formular :I_n =(1/(2a^2 (n−1))).(t/((t^2 +a^2 )^(n−1) ))+(1/a^2 ).((2n−3)/(2n−2)).I_(n−1) we get  I_2 =(2/3).((x+(1/2))/(x^2 +x+1))+(4/3).(1/2)∫((d(x+(1/2)))/((x+(1/2))^2 +(((√3)/2))^2 ))  =((2x+1)/(3(x^2 +x+1)))+.(4/(3(√3)))tan^(−1) (((2x+1)/(√3))).Similarly,  J_2 =((2x−1)/(3(x^2 −x+1)))+(4/(3(√3)))tan^(−1) (((2x−1)/(√3)))  Finally,4F=−M+N−4P+4Q=(1/(2(x^2 +x+1)))−(1/(2(x^2 −x+1)))  +(5/2){((2x+1)/(3(x^2 +x+1)))+.(4/(3(√3)))tan^(−1) (((2x+1)/(√3)))  +[((2x−1)/(3(x^2 −x+1)))+(4/(3(√3)))tan^(−1) (((2x−1)/(√3)))] }  −2ln(x^2 +x+1)+2ln(x^2 −x+1)−(4/(√3))tan^(−1) (((2x+1)/(√3)))−(4/(√3))tan^(−1) (((2x−1)/(√3)))  =((10x^3 +2x)/((x^2 +x+1)(x^2 −x+1)))+2ln((x^2 −x+1)/(x^2 +x+1))  −(2/(3(√3)))[tan^(−1) (((2x−1)/(√3)))+tan^(−1) (((2x+1)/(√3)))]  It is easy to see that 4F(0)=0  4F(+∞)=−(2/(3(√3)))((π/2)+(π/2))=−((2π)/(3(√3)))  Therefore,∫_0 ^(+∞) ((2x^2 −1)/((x^2 +x+1)^2 (x^2 −x+1)^2 ))dx=((−2𝛑)/(3(√3)))

F=124x2(x2+x+1)2(x2x+1)2dxdx(x2+x+1)2(x2x+1)2=(A)+(B)wehaveB=1(x2+x+1)2(x2x+1)2=[12(x+1(x2+x+1)x1(x2x+1))]2=x2+2x+14(x2+x+1)2+x22x+14(x2x+1)22x224(x2+x+1)(x2x+1)=14(x2+x+1)+x4(x2+x+1)2+14(x2x+1)+x4(x2x+1)2+2x+14(x2+x+1)2x14(x2x+1)2x+24(x2+x+1)2x24(x2x+1)+x4(x2+x+1)2+x4(x2x+1)2(set{x2+x+1=ux2x+1=v)4B=xu2xv2+2x+2u2x2vA=12(1x2x+11x2+x+1)2=(1(x2x+1)2+1(x2+x+1)22(x2+x+1)(x2x+1))dx2A=1(x2x+1)2+1(x2+x+1)2+(x1x2x+1x+1x2+x+1)=1u2+1v2+x1vx+1u4A=2u2+2v2+2x2v2x+2u.Hence,4F=4A4B=x2u2+x+2v24x+1)u+4(x1)v4F=(x2(x2+x+1)2+x+2(x2x+1)24x+1)x2+x+1+4(x1)x2x+1)dxWehave:dxx2+x+1=d(x+12)(x+12)2+(32)2=23tan1(x+1232)=23tan1(2x+13)(asdx(x2+a2)=1atan1(xa))Consequently,M=x2(x2+x+1)2dx=122x+1(x2+x+1)252dx(x2+x+1)2=12d(x2+x+1)(x2+x+1)232I2=12(x2+x+1)2+12I2N=x+2(x2x+1)2dx=122x1(x2x+1)2dx+52dx(x2x+1)2=12(x2x+1)2+52.J2P=x+1x2+x+1dx=122x+1x2+x+1dx+12dxx2+x+1=12ln(x2+x+1)+13tan1(2x+13)Q=x1x2x+1dx=12ln(x2x+1)13tan1(2x13)Wehave:I2=dt(t2+a2)2(witht=x+12Applycurrentformular:In=12a2(n1).t(t2+a2)n1+1a2.2n32n2.In1wegetI2=23.x+12x2+x+1+43.12d(x+12)(x+12)2+(32)2=2x+13(x2+x+1)+.433tan1(2x+13).Similarly,J2=2x13(x2x+1)+433tan1(2x13)Finally,4F=M+N4P+4Q=12(x2+x+1)12(x2x+1)+52{2x+13(x2+x+1)+.433tan1(2x+13)+[2x13(x2x+1)+433tan1(2x13)]}2ln(x2+x+1)+2ln(x2x+1)43tan1(2x+13)43tan1(2x13)=10x3+2x(x2+x+1)(x2x+1)+2lnx2x+1x2+x+1233[tan1(2x13)+tan1(2x+13)]Itiseasytoseethat4F(0)=04F(+)=233(π2+π2)=2π33Therefore,0+2x21(x2+x+1)2(x2x+1)2dx=2π33

Commented by abdomathmax last updated on 27/Jul/20

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com