All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 105232 by mathmax by abdo last updated on 27/Jul/20
calculate∫0∞cos(2x2)(4x2+9)3dx
Answered by mathmax by abdo last updated on 27/Jul/20
A=∫0∞cos(2x2)(4x2+9)3dx⇒2A=∫−∞+∞cos(2x2)(4x2+9)3dx=143∫−∞+∞cos(2x2)(x2+94)3dx=x=32t143∫−∞+∞cos(92t2)(94)3(t2+1)332dt=1162∫−∞+∞cos(92t2)(t2+1)3dt=1162Re(∫−∞+∞e92it2(t2+1)3dt)letφ(z)=e92iz2(z2+1)3polesofφ?φ(z)=e92iz2(z−i)3(z+i)3residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)andRes(φ,i)=limz→i1(3−1)!{(z−i)3φ(z)}(2)=12limz→i{e92iz2(z+i)3}(2)=12limz→i{9ize92iz2(z+i)3−3(z+i)2e92iz2(z+i)6}(1)=12limz→i{(9iz(z+i)−3)e92iz2(z+i)4}(1)=12limz→i{(9iz2−12)e92iz2(z+i)4}(1)=32limz→i{(3iz2−4)e92iz2(z+i)4}(1)=32limz→i(6ize92iz2+9iz(3iz2−4)e92iz2)(z+i)4−4(z+i)3(3iz2−4)e92iz2(z+i)8=32limz→i(6iz−27z3−36iz)(z+i)e92iz2−(3iz2−4)e92iz2(z+i)5=32×(−6+27i+36)(2i)e−92i−(−3i−4)e−92i(2i)5...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com