Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105232 by mathmax by abdo last updated on 27/Jul/20

calculate ∫_0 ^∞   ((cos(2x^2 ))/((4x^2  +9)^3 ))dx

calculate0cos(2x2)(4x2+9)3dx

Answered by mathmax by abdo last updated on 27/Jul/20

A =∫_0 ^∞  ((cos(2x^2 ))/((4x^2  +9)^3 ))dx ⇒2A =∫_(−∞) ^(+∞)  ((cos(2x^2 ))/((4x^2  +9)^3 ))dx   =(1/4^3 ) ∫_(−∞) ^(+∞)  ((cos(2x^2 ))/((x^2  +(9/4))^3 ))dx =_(x =(3/2)t)   (1/4^3 ) ∫_(−∞) ^(+∞)  ((cos((9/2)t^2 ))/(((9/4))^3 (t^2  +1)^3 ))(3/2)dt  =(1/(162)) ∫_(−∞) ^(+∞)  ((cos((9/2)t^2 ))/((t^2  +1)^3 )) dt  =(1/(162)) Re(∫_(−∞) ^(+∞)  (e^((9/2)it^2 ) /((t^2  +1)^3 ))dt) let  ϕ(z) =(e^((9/2)iz^2 ) /((z^2 +1)^3 ))  poles of ϕ?  ϕ(z) =(e^((9/2)iz^2 ) /((z−i)^3 (z+i)^3 )) residus theorem give   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) and  Res(ϕ,i) =lim_(z→i)   (1/((3−1)!)){(z−i)^3  ϕ(z)}^((2))   =(1/2)lim_(z→i)   { (e^((9/2)iz^2 ) /((z+i)^3 ))}^((2))   =(1/2)lim_(z→i)   { ((9iz e^((9/2)iz^2 ) (z+i)^3 −3(z+i)^2 e^((9/2)iz^2 ) )/((z+i)^6 ))}^((1))   =(1/2)lim_(z→i)   {(((9iz (z+i)−3)e^((9/2)iz^2 ) )/((z+i)^4 ))}^((1))   =(1/2)lim_(z→i)   {(((9iz^2 −12)e^((9/2)iz^2 ) )/((z+i)^4 ))}^((1))   =(3/2)lim_(z→i)    {(((3iz^2 −4)e^((9/2)iz^2 ) )/((z+i)^4 ))}^((1))   =(3/2)lim_(z→i)    (((6iz e^((9/2)iz^2 ) +9iz(3iz^2 −4)e^((9/2)iz^2 ) )(z+i)^4 −4(z+i)^3 (3iz^2 −4)e^((9/2)iz^2 ) )/((z+i)^8 ))  =(3/2)lim_(z→i)    (((6iz−27z^3 −36iz)(z+i) e^((9/2)iz^2 ) −(3iz^2 −4)e^((9/2)iz^2 ) )/((z+i)^5 ))  =(3/2)×(((−6+27i+36)(2i)e^(−(9/2)i) −(−3i−4)e^(−(9/2)i) )/((2i)^5 )) ...be continued...

A=0cos(2x2)(4x2+9)3dx2A=+cos(2x2)(4x2+9)3dx=143+cos(2x2)(x2+94)3dx=x=32t143+cos(92t2)(94)3(t2+1)332dt=1162+cos(92t2)(t2+1)3dt=1162Re(+e92it2(t2+1)3dt)letφ(z)=e92iz2(z2+1)3polesofφ?φ(z)=e92iz2(zi)3(z+i)3residustheoremgive+φ(z)dz=2iπRes(φ,i)andRes(φ,i)=limzi1(31)!{(zi)3φ(z)}(2)=12limzi{e92iz2(z+i)3}(2)=12limzi{9ize92iz2(z+i)33(z+i)2e92iz2(z+i)6}(1)=12limzi{(9iz(z+i)3)e92iz2(z+i)4}(1)=12limzi{(9iz212)e92iz2(z+i)4}(1)=32limzi{(3iz24)e92iz2(z+i)4}(1)=32limzi(6ize92iz2+9iz(3iz24)e92iz2)(z+i)44(z+i)3(3iz24)e92iz2(z+i)8=32limzi(6iz27z336iz)(z+i)e92iz2(3iz24)e92iz2(z+i)5=32×(6+27i+36)(2i)e92i(3i4)e92i(2i)5...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com