Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105266 by mohammad17 last updated on 27/Jul/20

Answered by mathmax by abdo last updated on 27/Jul/20

we have L(t^(3/2) ) =∫_0 ^∞  x^(3/2)  e^(−tx) dx =_(tx =u)   ∫_0 ^∞   ((u/t))^(3/2)  e^(−u)  (du/t)  =(1/t^((3/2)+1) )∫_0 ^∞  u^(3/2)  e^(−u)  du =(1/t^(5/2) ) ∫_0 ^∞  u^((5/2)−1)  e^(−u) du =((Γ((5/2)))/t^(5/2) )  Γ((5/2)) =Γ((3/2)+1) =(3/2)Γ((3/2)) =(3/2)Γ((1/2)+1) =(3/4)Γ((1/2))  Γ((1/2)) =∫_0 ^∞  t^((1/2)−1)  e^(−t)  dt =∫_0 ^∞  (e^(−t) /(√t))dt =_((√t)=u)   ∫_0 ^∞  (e^(−u^2 ) /u)(2u)du  =2∫_0 ^∞  e^(−u^2 ) du =(√π) ⇒L(t^(3/2) ) =(3/4)×((√π)/t^(5/2) )

wehaveL(t32)=0x32etxdx=tx=u0(ut)32eudut=1t32+10u32eudu=1t520u521eudu=Γ(52)t52Γ(52)=Γ(32+1)=32Γ(32)=32Γ(12+1)=34Γ(12)Γ(12)=0t121etdt=0ettdt=t=u0eu2u(2u)du=20eu2du=πL(t32)=34×πt52

Answered by abdomathmax last updated on 27/Jul/20

L(h(s))=∫_0 ^∞ t^2 sin(2t)e^(−st) dt  =Im(∫_0 ^∞ t^2  e^(2it−st) dt) =Im(∫_0 ^∞  t^2  e^((2i−s)t) dt) but by parts  ∫_0 ^∞  t^2  e^((2i−s)t) dt  =[(t^2 /(2i−s))e^((2i−s)t) ]_(t=0) ^∞ −∫_0 ^∞ 2t .(1/(2i−s))e^((2i−s)t) dt  =−(2/(2i−s))∫_0 ^∞  t e^((2i−s)t)  dt  =((−2)/(2i−s)){ [(t/(2i−s)) e^((2i−s)t) ]_0 ^∞ −∫_0 ^∞  (1/(2i−s))e^((2i−s)t) dt}  =(2/((2i−s)^2 ))∫_0 ^∞  e^((2i−s)t) dt =(2/((2i−s)^2 ))[(1/(2i−s))e^((2i−s)t) ]_0 ^∞   =−(2/((2i−s)^3 )) =(2/((s−2i)^3 )) =((2(s+2i)^3 )/((s^2  +4)^3 ))  =((2(s^3  +3s^2 (2i) +3s(2i)^2  +(2i)^3 ))/((s^2  +4)^3 ))  =((2(s^(3 )  +6is^2  −12s−8i))/((s^2  +4)^3 )) ⇒  Im(...) =((2(6s^2 −8))/((s^2  +4)^3 )) ⇒ F(s) =((4(3s^2 −4))/((s^2  +4)^3 ))

L(h(s))=0t2sin(2t)estdt=Im(0t2e2itstdt)=Im(0t2e(2is)tdt)butbyparts0t2e(2is)tdt=[t22ise(2is)t]t=002t.12ise(2is)tdt=22is0te(2is)tdt=22is{[t2ise(2is)t]0012ise(2is)tdt}=2(2is)20e(2is)tdt=2(2is)2[12ise(2is)t]0=2(2is)3=2(s2i)3=2(s+2i)3(s2+4)3=2(s3+3s2(2i)+3s(2i)2+(2i)3)(s2+4)3=2(s3+6is212s8i)(s2+4)3Im(...)=2(6s28)(s2+4)3F(s)=4(3s24)(s2+4)3

Answered by Aziztisffola last updated on 27/Jul/20

A) F(s)=(−1)^2 (d^2 /ds^2 )L(sin2t)=(d^2 /ds^2 )L(sin2t)  =(d^2 /ds^2 )((2/(s^2 +4)))=(d/ds)(((−4s)/((s^2 +4)^2 )))=((−4(s^2 +4)^2 +4s.2s(s^2 +4))/((s^2 +4)^4 ))  =((−4(s^2 +4)+ 8s^2 )/((s^2 +4)^3 ))=((4s^2 −16)/((s^2 +4)^3 ))   F(s)=((4s^2 −16)/((s^2 +4)^3 ))

A)F(s)=(1)2d2ds2L(sin2t)=d2ds2L(sin2t)=d2ds2(2s2+4)=dds(4s(s2+4)2)=4(s2+4)2+4s.2s(s2+4)(s2+4)4=4(s2+4)+8s2(s2+4)3=4s216(s2+4)3F(s)=4s216(s2+4)3

Answered by bemath last updated on 27/Jul/20

Answered by Aziztisffola last updated on 27/Jul/20

(B) L(t^(3/2) )=L(t(√t))=−(d/ds)L((√t))=−(((√π)/(2(√s^3 ))))′  =−((√π)/2)((1/(√s^3 )))′=((3(√π))/4)(s/(√s))=((3(√π))/4)(√s)   L(t^(3/2) )=((3(√π))/4)(√s)

(B)L(t32)=L(tt)=ddsL(t)=(π2s3)=π2(1s3)=3π4ss=3π4sL(t32)=3π4s

Answered by mathmax by abdo last updated on 27/Jul/20

b)x(y+2)y^′  =lnx +1 andy(1)=−1  (y+2)y^′   =((lnx+1)/x) ⇒∫(y+2)y^′  dy =∫((lnx+1)/x)dx  ⇒  (1/2)y^2  +2y =ln∣x∣ +∫ ((lnx)/x)dx ⇒y^2  +4y −2{ln∣x∣+∫ ((lnx)/x)dx}=0  Δ^′  =4+2{ln∣x∣+∫ ((lnx)/x)dx} ⇒ y =−2 +^− (√(ln∣x∣+∫((lnx)/x)dx))

b)x(y+2)y=lnx+1andy(1)=1(y+2)y=lnx+1x(y+2)ydy=lnx+1xdx12y2+2y=lnx+lnxxdxy2+4y2{lnx+lnxxdx}=0Δ=4+2{lnx+lnxxdx}y=2+lnx+lnxxdx

Commented by abdomathmax last updated on 27/Jul/20

but ∫ ((lnx)/x)dx =(1/2)ln^2 x +c ⇒  y =−2+^− (√(ln∣x∣+((ln^2 x)/2)+c))

butlnxxdx=12ln2x+cy=2+lnx+ln2x2+c

Answered by Aziztisffola last updated on 27/Jul/20

A) 2x(√(x^2 −y^2 )) y′=1+2x(√(x^2 −y^2 ))  (2x−(x^2 −y^2 )′)(√(x^2 −y^2 ))=1+2x(√(x^2 −y^2 ))  −(x^2 −y^2 )′(√(x^2 −y^2 ))=1  −((x−yy′)/(√(x^2 −y^2 )))(√(x^2 −y^2 ))=1  yy′=x+1 ⇒∫yy′dx=∫(x+1)dx  (y^2 /2)=(x^2 /2)+x+c ⇒y=+_− (√(∣x^2 +2x+C∣))

A)2xx2y2y=1+2xx2y2(2x(x2y2))x2y2=1+2xx2y2(x2y2)x2y2=1xyyx2y2x2y2=1yy=x+1yydx=(x+1)dxy22=x22+x+cy=+x2+2x+C

Answered by Aziztisffola last updated on 27/Jul/20

B)  x(y+2)y′=lnx+1⇔(y+2)y′=lnx/x+1/x  yy′+2y′=((lnx)/x)+(1/x)⇒∫(yy′+2y′)dx=∫(((lnx)/x)+(1/x))dx  (1/2)y^2 +2y=(1/2)ln^2 (x)+lnx+C  (1/2)y^2 (1)+2y(1)=(1/2)ln^2 (1)+ln(1)+C  (1/2)−2=C⇒C=−(3/2)  (1/2)y^2 +2y=(1/2)ln^2 (x)+lnx−(3/2)  ⇔y^2 +4y=ln^2 (x)+2lnx−3  ⇔y^2 +4y+4=ln^2 (x)+2lnx+1  ⇔(y+2)^2 =ln^2 (x)+2lnx+1  ⇒y=+_− (√(∣ln^2 (x)+2lnx+1∣)) −2

B)x(y+2)y=lnx+1(y+2)y=lnx/x+1/xyy+2y=lnxx+1x(yy+2y)dx=(lnxx+1x)dx12y2+2y=12ln2(x)+lnx+C12y2(1)+2y(1)=12ln2(1)+ln(1)+C122=CC=3212y2+2y=12ln2(x)+lnx32y2+4y=ln2(x)+2lnx3y2+4y+4=ln2(x)+2lnx+1(y+2)2=ln2(x)+2lnx+1y=+ln2(x)+2lnx+12

Answered by abdomathmax last updated on 27/Jul/20

y^(′′) −6y^′  −7y =13cos(2t)+34sin(2t)  h→r^2 −6r−7 =0  Δ^′  =9+7 =16 ⇒r_1 =3+4 =7 and r_2 =3−4 =−1 ⇒  y_h =a e^(7x)  +be^(−x)  =au_1  +bu_2   W(u_1  ,u_2 ) = determinant (((e^(7x)         e^(−x) )),((7e^(7x)        −e^(−x) )))=−e^(6x) −7e^(6x)  =−8e^(6x)  ≠0  W_1 = determinant (((o          e^(−x) )),((13cos(2x)+34sin(2x)    −e^(−x) )))  =−e^(−x) (13cos(2x)+34sin(2x))  W_2 = determinant (((e^(7x)         0)),((7e^(7x)       13cos(2x) +34sin(2x))))  =e^(7x) (13 cos(2x)+34 sin(2x)  v_1 =∫ (w_1 /w)dx =−∫  ((e^(−x) {13cos(2x)+34 sin(2x)})/(−8e^(6x) ))dx  =(1/8)∫  e^(−7x) {13cos(2x)+34sin(2x)}dx =...  v_2 =∫ (w_2 /w)dx =∫ ((e^(7x) {13cos(2x)+34 sin(2x)})/(−8e^(6x) ))dx  =−(1/8) ∫ e^x {13cos(2x)+34sin(2x)}dx =...  ⇒y_p =u_1 v_1  +u_2 v_2   and general solution is  y =y_h  +y_p

y6y7y=13cos(2t)+34sin(2t)hr26r7=0Δ=9+7=16r1=3+4=7andr2=34=1yh=ae7x+bex=au1+bu2W(u1,u2)=|e7xex7e7xex|=e6x7e6x=8e6x0W1=|oex13cos(2x)+34sin(2x)ex|=ex(13cos(2x)+34sin(2x))W2=|e7x07e7x13cos(2x)+34sin(2x)|=e7x(13cos(2x)+34sin(2x)v1=w1wdx=ex{13cos(2x)+34sin(2x)}8e6xdx=18e7x{13cos(2x)+34sin(2x)}dx=...v2=w2wdx=e7x{13cos(2x)+34sin(2x)}8e6xdx=18ex{13cos(2x)+34sin(2x)}dx=...yp=u1v1+u2v2andgeneralsolutionisy=yh+yp

Terms of Service

Privacy Policy

Contact: info@tinkutara.com