Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105370 by mohammad17 last updated on 28/Jul/20

Answered by Ar Brandon last updated on 28/Jul/20

Q1/A/  (1) f(x,y)=e^(−2y) cos(3x)    ((δf)/(δx))=−3e^(−2y) sin(3x)⇒((δ^2 f)/(δx^2 ))=−9e^(−2y) cos(3x)    ((δf)/(δy))=−2e^(−2y) cos(3x)⇒((δ^2 f)/(δy^2 ))=4e^(−2y) cos(3x)    ((δ^2 f)/(δx^2 ))+((δ^2 f)/(δy^2 ))=−5e^(−2y) cos(3x)≠0  However, if f(x)=e^(−3y) cos(3x), we′ll have;  ((δ^2 f)/(δx^2 ))=−9e^(−3y) cos(3x) and ((δ^2 f)/(δy^2 ))=9e^(−3y) cos(3x)  ⇒((δ^2 f)/(δx^2 ))+((δ^2 f)/(δy^2 ))=0

Q1/A/(1)f(x,y)=e2ycos(3x)δfδx=3e2ysin(3x)δ2fδx2=9e2ycos(3x)δfδy=2e2ycos(3x)δ2fδy2=4e2ycos(3x)δ2fδx2+δ2fδy2=5e2ycos(3x)0However,iff(x)=e3ycos(3x),wellhave;δ2fδx2=9e3ycos(3x)andδ2fδy2=9e3ycos(3x)δ2fδx2+δ2fδy2=0

Commented by mohammad17 last updated on 28/Jul/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 28/Jul/20

∫_0 ^(log2) ∫_1 ^(log4) e^(2x+y) dydx  ∫_0 ^(log2) e^(2x) [e^y ]_1 ^(log4)   (4−e)∫_0 ^(log2) e^(2x) dx  ((4−e)/2)[e^(2x) ]_0 ^(log2) =((4−e)/2)(4−1)=(3/2)(4−e)

0log21log4e2x+ydydx0log2e2x[ey]1log4(4e)0log2e2xdx4e2[e2x]0log2=4e2(41)=32(4e)

Commented by mohammad17 last updated on 28/Jul/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 28/Jul/20

∫_1 ^2 ∫_0 ^4 ((√x)/y^3 )dxdy  =∫_1 ^2 (2/(3y^3 ))[x^(3/2) ]_0 ^4 dy  =∫_1 ^2 ((16)/3)y^(−3) dy  =−[(8/(3y^2 ))]_1 ^2 =−(2/3)+(8/3)=2

1204xy3dxdy=1223y3[x32]04dy=12163y3dy=[83y2]12=23+83=2

Commented by mohammad17 last updated on 28/Jul/20

thank you sir

thankyousir

Answered by Ar Brandon last updated on 28/Jul/20

Q1B   W=ln(x^2 +y^2 +3z)   ((δW)/(δx))=((2x)/(x^2 +y^2 +3z)) , ((δ^2 W)/(δxδy))=((−4xy)/((x^2 +y^2 +3z)^2 ))  ((δ^3 W)/(δxδyδz))=((12xyz)/((x^2 +y^2 +3z)^3 ))

Q1BW=ln(x2+y2+3z)δWδx=2xx2+y2+3z,δ2Wδxδy=4xy(x2+y2+3z)2δ3Wδxδyδz=12xyz(x2+y2+3z)3

Commented by mohammad17 last updated on 28/Jul/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com