All Questions Topic List
Logarithms Questions
Previous in All Question Next in All Question
Previous in Logarithms Next in Logarithms
Question Number 105380 by Skabetix last updated on 28/Jul/20
Commented by Skabetix last updated on 28/Jul/20
plsneedhelp
Answered by 1549442205PVT last updated on 28/Jul/20
ApplyCauchy′sinequalityforthreepositivenumnersweget:a2+ab+b2⩾33a2.ab.b2=3ab⇒logc(a2+ab+b2)⩾logc(3ab)=logc3+logca+logcbSimilarly,loga(b2+bc+c2)⩾loga3+logab+logaclogb(c2+ca+a2)⩾logb3+logbc+logbaAddingupthreeaboveinequalitiesweget:LHS⩾loga3+logb3+logc3+(logab+logba)+(logbc+logcb)+(logca+logac)⩾loga3+logb3+logc3+6(1)(sincelogxy+logyx⩾2logxy.logyx=2duetologxy.logyx=1)Fromthehypothesisa.b.c=3weget1=log33=log3(a.b.c)=log3a+log3b+log3cTherefeore,applytheinequality(x+y+z)(1x+1y+1z)⩾9(x,y,z>0)weget:loga3+logb3+logc3⩾9log3a+log3b+log3c=9(2)Fromtheinequalities(1)and(2)weobtain:LHS⩾9+6=15(q.e.d)Theequalityocurrsifandonlyifa=b=c=33
Terms of Service
Privacy Policy
Contact: info@tinkutara.com