All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 105386 by bemath last updated on 28/Jul/20
∫x3(a2+x2)3dx
Answered by john santu last updated on 28/Jul/20
bysubstitutex=atanθI=∫x3dx(a2+x2)3=a∫tan3θsec3θ.sec2θdθI=a∫tan3θsecθdθ=a∫sin3θcos2θdθsetw=cosθI=−a∫1−w2w2dw=aw+aw+c∴I=acosθ+acosθ+cI=a2a2+x2+a2+x2+c(JS♠⧫)
Answered by mathmax by abdo last updated on 28/Jul/20
I=∫x3(a2+x2)3dxwedothechangementx=asht⇒I=∫a3sh3ta6(cht)6ach(t)dt=∫a3sh3ta3ch3t×ach(t)dt=a∫sh3tch2tdt=a∫sh2tshtch2tdt=a∫sht(ch2t−1)ch2tdt=a∫sh(t)−a∫shtch2tdt=ach(t)+ach(t)+cbutt=argsh(xa)=ln(xa+1+x2a2)andch(t)=1+sh2t=1+x2a2⇒I=a1+x2a2+a1+x2a2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com