Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105386 by bemath last updated on 28/Jul/20

∫ (x^3 /(√((a^2 +x^2 )^3 ))) dx

x3(a2+x2)3dx

Answered by john santu last updated on 28/Jul/20

by substitute x = a tan θ  I= ∫ ((x^3 dx)/(√((a^2 +x^2 )^3 ))) = a∫ ((tan^3 θ)/(sec^3 θ)).sec^2 θ dθ  I= a∫ ((tan^3 θ)/(sec θ))dθ = a∫ ((sin^3 θ)/(cos^2 θ)) dθ  set w = cos θ  I= −a∫ ((1−w^2 )/w^2 ) dw=aw+(a/w)+c  ∴ I=a cos θ+(a/(cos θ))+c  I= (a^2 /(√(a^2 +x^2 ))) + (√(a^2 +x^2 )) + c   (JS ♠⧫)

bysubstitutex=atanθI=x3dx(a2+x2)3=atan3θsec3θ.sec2θdθI=atan3θsecθdθ=asin3θcos2θdθsetw=cosθI=a1w2w2dw=aw+aw+cI=acosθ+acosθ+cI=a2a2+x2+a2+x2+c(JS)

Answered by mathmax by abdo last updated on 28/Jul/20

I =∫  (x^3 /(√((a^2  +x^2 )^3 )))dx we do the changement x =asht ⇒  I =∫ ((a^3  sh^3 t)/(√(a^6 (cht)^6 ))) ach(t)dt =∫ ((a^3  sh^3 t)/(a^3 ch^3 t)) ×ach(t)dt  =a ∫  ((sh^3 t)/(ch^2 t))dt =a ∫  ((sh^2 t sht)/(ch^2 t))dt =a ∫ ((sht(ch^2 t−1))/(ch^2 t))dt  =a ∫ sh(t)−a ∫  ((sht)/(ch^2 t))dt =ach(t) +(a/(ch(t))) +c  but t =argsh((x/a)) =ln((x/a)+(√(1+(x^2 /a^2 )))) and ch(t) =(√(1+sh^2 t))  =(√(1+(x^2 /a^2 ))) ⇒I =a(√(1+(x^2 /a^2 ))) +(a/(√(1+(x^2 /a^2 ))))  +C

I=x3(a2+x2)3dxwedothechangementx=ashtI=a3sh3ta6(cht)6ach(t)dt=a3sh3ta3ch3t×ach(t)dt=ash3tch2tdt=ash2tshtch2tdt=asht(ch2t1)ch2tdt=ash(t)ashtch2tdt=ach(t)+ach(t)+cbutt=argsh(xa)=ln(xa+1+x2a2)andch(t)=1+sh2t=1+x2a2I=a1+x2a2+a1+x2a2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com