Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 10540 by FilupS last updated on 17/Feb/17

Commented by FilupS last updated on 17/Feb/17

All side lenghts = n  ∠CAE=θ  0≤θ<(π/3)     1.  Determine the area of the overlapping sections  2.  Determine the area of the non overlapping area        located at point C  3. Determine the area of the bottom−most        non overlapping area (near points A and B)

$$\mathrm{All}\:\mathrm{side}\:\mathrm{lenghts}\:=\:{n} \\ $$$$\angle{CAE}=\theta \\ $$$$\mathrm{0}\leqslant\theta<\frac{\pi}{\mathrm{3}} \\ $$$$\: \\ $$$$\mathrm{1}.\:\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{overlapping}\:\mathrm{sections} \\ $$$$\mathrm{2}.\:\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{non}\:\mathrm{overlapping}\:\mathrm{area} \\ $$$$\:\:\:\:\:\:\mathrm{located}\:\mathrm{at}\:\mathrm{point}\:{C} \\ $$$$\mathrm{3}.\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bottom}−\mathrm{most} \\ $$$$\:\:\:\:\:\:\mathrm{non}\:\mathrm{overlapping}\:\mathrm{area}\:\left(\mathrm{near}\:\mathrm{points}\:{A}\:\mathrm{and}\:{B}\right) \\ $$

Commented by ajfour last updated on 17/Feb/17

 which app did u draw the triangles with( if  on mobile)?

$$\:{which}\:{app}\:{did}\:{u}\:{draw}\:{the}\:{triangles}\:{with}\left(\:{if}\:\:{on}\:{mobile}\right)? \\ $$

Commented by FilupS last updated on 17/Feb/17

Geogebra

$$\mathrm{Geogebra} \\ $$

Answered by mrW1 last updated on 18/Feb/17

((CF)/(sin ∠CAF))=((CA)/(sin ∠CFA))  ⇒((CF)/(sin (θ/2)))=(n/(sin (π−(θ/2)−(π/3))))=(n/(sin ((θ/2)+(π/3))))  ⇒CF=((sin (θ/2))/(sin ((θ/2)+(π/3))))n  similarily:  ⇒CG=((sin θ)/(sin (θ+(π/3))))n    ((GB)/(sin ∠BAG))=((AB)/(sin ∠AGB))  ⇒((GB)/(sin ((π/3)−θ)))=(n/(sin ((θ/2)+(π/3))))  ⇒GB=((sin ((π/3)−θ))/(sin ((θ/2)+(π/3))))n    FG=CG−CF=[((sin θ)/(sin (θ+(π/3))))−((sin (θ/2))/(sin ((θ/2)+(π/3))))]n    EF=CF  FH=FG  HD=GB    A_(ΔAEF) =A_(ΔACF) =(1/2)×CF×((√3)/2)n=((√3)/4)n^2 ×((sin (θ/2))/(sin ((θ/2)+(π/3))))    A_(ΔAFH) =A_(ΔAFG) =(1/2)×FG×((√3)/2)n=((√3)/4)n^2 ×[((sin θ)/(sin (θ+(π/3))))−((sin (θ/2))/(sin ((θ/2)+(π/3))))]  A_(ΔAHD) =A_(ΔAGB) =(1/2)×GB×((√3)/2)n=((√3)/4)n^2 ×((sin ((π/3)−θ))/(sin ((θ/2)+(π/3))))    (1)  area of overlapping zone A_1   A_1 =2×A_(ΔAFG) =((√3)/2)n^2 ×[((sin θ)/(sin (θ+(π/3))))−((sin (θ/2))/(sin ((θ/2)+(π/3))))]    (2)  A_2 =A_(ΔCHF) =A_(ΔACF) −A_(ΔAFH) =((√3)/4)n^2 ×((sin (θ/2))/(sin ((θ/2)+(π/3))))−((√3)/4)n^2 ×[((sin θ)/(sin (θ+(π/3))))−((sin (θ/2))/(sin ((θ/2)+(π/3))))]  =((√3)/4)n^2 ×[((2sin (θ/2))/(sin ((θ/2)+(π/3))))−((sin θ)/(sin (θ+(π/3))))]    (3)  A_3 =A_(ΔAGB) =((√3)/4)n^2 ×((sin ((π/3)−θ))/(sin ((θ/2)+(π/3))))

$$\frac{{CF}}{\mathrm{sin}\:\angle{CAF}}=\frac{{CA}}{\mathrm{sin}\:\angle{CFA}} \\ $$$$\Rightarrow\frac{{CF}}{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}=\frac{{n}}{\mathrm{sin}\:\left(\pi−\frac{\theta}{\mathrm{2}}−\frac{\pi}{\mathrm{3}}\right)}=\frac{{n}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)} \\ $$$$\Rightarrow{CF}=\frac{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}{n} \\ $$$${similarily}: \\ $$$$\Rightarrow{CG}=\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}{n} \\ $$$$ \\ $$$$\frac{{GB}}{\mathrm{sin}\:\angle{BAG}}=\frac{{AB}}{\mathrm{sin}\:\angle{AGB}} \\ $$$$\Rightarrow\frac{{GB}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}−\theta\right)}=\frac{{n}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)} \\ $$$$\Rightarrow{GB}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}−\theta\right)}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}{n} \\ $$$$ \\ $$$${FG}={CG}−{CF}=\left[\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}−\frac{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}\right]{n} \\ $$$$ \\ $$$${EF}={CF} \\ $$$${FH}={FG} \\ $$$${HD}={GB} \\ $$$$ \\ $$$${A}_{\Delta{AEF}} ={A}_{\Delta{ACF}} =\frac{\mathrm{1}}{\mathrm{2}}×{CF}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{n}=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{n}^{\mathrm{2}} ×\frac{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)} \\ $$$$ \\ $$$${A}_{\Delta{AFH}} ={A}_{\Delta{AFG}} =\frac{\mathrm{1}}{\mathrm{2}}×{FG}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{n}=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{n}^{\mathrm{2}} ×\left[\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}−\frac{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}\right] \\ $$$${A}_{\Delta{AHD}} ={A}_{\Delta{AGB}} =\frac{\mathrm{1}}{\mathrm{2}}×{GB}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{n}=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{n}^{\mathrm{2}} ×\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}−\theta\right)}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)} \\ $$$$ \\ $$$$\left(\mathrm{1}\right) \\ $$$${area}\:{of}\:{overlapping}\:{zone}\:{A}_{\mathrm{1}} \\ $$$${A}_{\mathrm{1}} =\mathrm{2}×{A}_{\Delta{AFG}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{n}^{\mathrm{2}} ×\left[\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}−\frac{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}\right] \\ $$$$ \\ $$$$\left(\mathrm{2}\right) \\ $$$${A}_{\mathrm{2}} ={A}_{\Delta{CHF}} ={A}_{\Delta{ACF}} −{A}_{\Delta{AFH}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{n}^{\mathrm{2}} ×\frac{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{n}^{\mathrm{2}} ×\left[\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}−\frac{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}\right] \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{n}^{\mathrm{2}} ×\left[\frac{\mathrm{2sin}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)}−\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)}\right] \\ $$$$ \\ $$$$\left(\mathrm{3}\right) \\ $$$${A}_{\mathrm{3}} ={A}_{\Delta{AGB}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{n}^{\mathrm{2}} ×\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}−\theta\right)}{\mathrm{sin}\:\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{3}}\right)} \\ $$

Commented by FilupS last updated on 17/Feb/17

Awesome job!

$${A}\mathrm{wesome}\:\mathrm{job}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com