Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105411 by Ar Brandon last updated on 28/Jul/20

∫((x^2 +3)/(x^6 (x^2 +1)))dx  Is there any special method of decomposition  other than the use of partial fractions ?

$$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{6}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}\mathrm{d}{x} \\ $$$${I}\mathrm{s}\:{there}\:{any}\:{special}\:{method}\:{of}\:{decomposition} \\ $$$${other}\:{than}\:{the}\:{use}\:{of}\:{partial}\:{fractions}\:? \\ $$

Answered by Dwaipayan Shikari last updated on 28/Jul/20

∫((x^2 +1)/(x^6 (x^2 +1)))+(2/(x^6 (x^2 +1)))dx  ∫(1/x^6 )+2∫(1/x^4 )((1/x^2 )−(1/(x^2 +1)))dx  3∫(1/x^6 )−2∫(1/(x^4 (x^2 +1)))dx  3∫(1/x^6 )−2∫(1/x^2 )((1/x^2 )−(1/(x^2 +1)))dx  3∫(1/x^6 )−2∫(1/x^4 )+2∫(1/(x^2 (x^2 +1)))dx  3∫(1/x^6 )−2∫(1/x^4 )+2∫(1/x^2 )−2∫(1/(x^2 +1))dx  −(3/(5x^5 ))+(2/(3x^3 ))−(2/x)−2tan^(−1) x+C

$$\int\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{6}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}+\frac{\mathrm{2}}{{x}^{\mathrm{6}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$$$\int\frac{\mathrm{1}}{{x}^{\mathrm{6}} }+\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\right){dx} \\ $$$$\mathrm{3}\int\frac{\mathrm{1}}{{x}^{\mathrm{6}} }−\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{4}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$$$\mathrm{3}\int\frac{\mathrm{1}}{{x}^{\mathrm{6}} }−\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\right){dx} \\ $$$$\mathrm{3}\int\frac{\mathrm{1}}{{x}^{\mathrm{6}} }−\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$$$\mathrm{3}\int\frac{\mathrm{1}}{{x}^{\mathrm{6}} }−\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\mathrm{2}\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$−\frac{\mathrm{3}}{\mathrm{5}{x}^{\mathrm{5}} }+\frac{\mathrm{2}}{\mathrm{3}{x}^{\mathrm{3}} }−\frac{\mathrm{2}}{{x}}−\mathrm{2}{tan}^{−\mathrm{1}} {x}+{C} \\ $$

Commented by Dwaipayan Shikari last updated on 28/Jul/20

I think so . Is it a better way that you have mentioned?

$${I}\:{think}\:{so}\:.\:{Is}\:{it}\:{a}\:{better}\:{way}\:{that}\:{you}\:{have}\:{mentioned}? \\ $$

Commented by Dwaipayan Shikari last updated on 28/Jul/20

����

Commented by Ar Brandon last updated on 28/Jul/20

Perfect, bro. Exactly what I needed. Thanks��

Commented by Ar Brandon last updated on 28/Jul/20

(1/(x^2 (x^2 +1)))=((x^2 +1−x^2 )/(x^2 (x^2 +1)))=((x^2 +1)/(x^2 (x^2 +1)))−(x^2 /(x^2 (x^2 +1)))                       =(1/x^2 )−(1/(x^2 +1)) ,

$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{x}^{\mathrm{2}} +\mathrm{1}−{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}−\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\:,\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com