Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105412 by john santu last updated on 28/Jul/20

∫_0 ^(π/2) ln (cos x) dx

π/20ln(cosx)dx

Answered by Dwaipayan Shikari last updated on 28/Jul/20

∫_0 ^(π/2) log(cosx)dx=I=∫_0 ^(π/2) log(sinx)dx  2I=∫_0 ^(π/2) log(sinxcosx)dx  2I=∫_0 ^(π/4) log(sin2x)dx−∫_0 ^(π/2) log(2)     {  ∫_0 ^(π/4) log(sin2x)=∫_0 ^(π/2) log(sint)}  2I=I−∫_0 ^(π/2) log(2)  I=−(π/2)log(2)

0π2log(cosx)dx=I=0π2log(sinx)dx2I=0π2log(sinxcosx)dx2I=0π4log(sin2x)dx0π2log(2){0π4log(sin2x)=0π2log(sint)}2I=I0π2log(2)I=π2log(2)

Commented by bemath last updated on 28/Jul/20

∫_0 ^(π/2) log (2) dx ?

π/20log(2)dx?

Commented by Dwaipayan Shikari last updated on 28/Jul/20

[xlog(2)]_0 ^(π/2) =((π/2)−0)log2=(π/2)log2

[xlog(2)]0π2=(π20)log2=π2log2

Commented by Dwaipayan Shikari last updated on 28/Jul/20

∫_0 ^(π/2) log(cosx)dx  =∫_0 ^(π/2) log(((e^(ix) +e^(−ix) )/2))dx  =∫_0 ^(π/2) log e^(−ix) +log(e^(2ix) +1)−∫_0 ^(π/2) log2  =∫_0 ^(π/2) −ix+∫log(e^(2ix) +1)−(π/2)log(2)  =−((iπ^2 )/8)−(π/2)log(2)+∫_0 ^(π/2) log(e^(2ix) +1)  =((−iπ^2 )/8)−(π/2)log(2)+((iπ^2 )/8)=−(π/2)log(2)

0π2log(cosx)dx=0π2log(eix+eix2)dx=0π2logeix+log(e2ix+1)0π2log2=0π2ix+log(e2ix+1)π2log(2)=iπ28π2log(2)+0π2log(e2ix+1)=iπ28π2log(2)+iπ28=π2log(2)

Commented by Dwaipayan Shikari last updated on 28/Jul/20

Commented by Dwaipayan Shikari last updated on 28/Jul/20

From wolfram alpha

Fromwolframalpha

Answered by bemath last updated on 29/Jul/20

Commented by mathmax by abdo last updated on 29/Jul/20

no sir the correct answer is ∫_0 ^(π/2) ln(sinu)du =−(π/2)ln(2)

nosirthecorrectansweris0π2ln(sinu)du=π2ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com