Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105431 by bachamohamed last updated on 28/Jul/20

 Σ_(k=1) ^(k=n) ((1/k))^2 =?  any help pleaze

$$\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\sum}}\left(\frac{\mathrm{1}}{\boldsymbol{{k}}}\right)^{\mathrm{2}} =? \\ $$$$\boldsymbol{{any}}\:\boldsymbol{{help}}\:\boldsymbol{{pleaze}} \\ $$

Commented by Dwaipayan Shikari last updated on 28/Jul/20

Σ_(k=1) ^∞ ((1/k))^2 =(π^2 /6)  but Σ_(k=1) ^n ((1/k))^2 is a great question

$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$${but}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} {is}\:{a}\:{great}\:{question} \\ $$

Commented by bachamohamed last updated on 28/Jul/20

yes tha′s why i asked for help

$$\mathrm{yes}\:\mathrm{tha}'\mathrm{s}\:\mathrm{why}\:\mathrm{i}\:\mathrm{asked}\:\mathrm{for}\:\mathrm{help} \\ $$

Commented by Rohit@Thakur last updated on 28/Jul/20

Dear sir it can be solved with the help of fourier series...infact it is Euler series

$${Dear}\:{sir}\:{it}\:{can}\:{be}\:{solved}\:{with}\:{the}\:{help}\:{of}\:{fourier}\:{series}...{infact}\:{it}\:{is}\:{Euler}\:{series} \\ $$

Commented by mathmax by abdo last updated on 28/Jul/20

show the work  sir .

$$\mathrm{show}\:\mathrm{the}\:\mathrm{work}\:\:\mathrm{sir}\:. \\ $$

Commented by Dwaipayan Shikari last updated on 29/Jul/20

Cauchy schwarz inequality  Σ_(k=1) ^n (k)^2 .Σ_(k=1) ^n ((1/k))^2 ≥(Σ_(k=1) ^n k_ .(1/k))^2   ((n(n+1)(2n+1))/6).Σ_(k=1) ^n ((1/k))^2 ≥(n)^2   Σ_(k=1) ^n ((1/k))^2 ≥((6n)/((n+1)(2n+1)))

$${Cauchy}\:{schwarz}\:{inequality} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({k}\right)^{\mathrm{2}} .\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} \geqslant\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}_{} .\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} \\ $$$$\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}.\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} \geqslant\left({n}\right)^{\mathrm{2}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} \geqslant\frac{\mathrm{6}{n}}{\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$ \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 29/Jul/20

I think it cannot be derived

$${I}\:{think}\:{it}\:{cannot}\:{be}\:{derived} \\ $$

Answered by mathmax by abdo last updated on 28/Jul/20

we get this sum by iteration  let S_n =Σ_(k=1) ^n  (1/k^2 ) ⇒  S_n =Σ_(k=2p)   (1/k^2 ) +Σ_(k=2p+1)  (1/k^2 ) =Σ_(p=1) ^([(n/2)])  (1/(4p^2 )) +Σ_(p=0) ^([((n−1)/2)] )  (1/((2p+1)^2 ))  also Σ_(p=1) ^([(n/2)])  (1/p^2 ) =Σ_(2m≤[(n/2)])    (1/(4m^2 )) +Σ_(2m+1 ≤[(n/2)])    (1/((2m+1)^2 ))  =(1/4)Σ_(m=1) ^([(([(n/2)])/2)])  (1/m^2 ) +Σ_(m=0) ^([(([(n/2)]−1)/2)])  (1/((2m+1)^2 )) =.....  example Σ_(n=1) ^(10)  (1/n^2 ) =Σ_(n=1) ^([((10)/2)])  (1/(4n^2 )) +Σ_(n=0) ^([(9/2)])  (1/((2n+1)^2 ))  =(1/4) Σ_(n=1) ^5  (1/n^2 ) +Σ_(n=0) ^4  (1/((2n+1)^2 ))  =(1/4){ Σ_(n=1) ^([(5/2)])  (1/(4n^2 )) +Σ_(n=0) ^2  (1/((2n+1)^2 ))} +Σ_(n=0) ^4  (1/((2n+1)^2 ))  =(1/4^2 ) Σ_(n=1) ^2 (1/n^2 )  +((1/4)+1)Σ_(n=0) ^2  (1/((2n+1)^2 )) +Σ_(n=3) ^4  (1/((2n+1)^2 ))  =(1/(16))(1+(1/4)) +(5/4)(1 +(1/9) +(1/(25))) +(1/7^2 ) +(1/9^2 ) =....

$$\mathrm{we}\:\mathrm{get}\:\mathrm{this}\:\mathrm{sum}\:\mathrm{by}\:\mathrm{iteration}\:\:\mathrm{let}\:\mathrm{S}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{S}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{2p}} \:\:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\:+\sum_{\mathrm{k}=\mathrm{2p}+\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\:=\sum_{\mathrm{p}=\mathrm{1}} ^{\left[\frac{\mathrm{n}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\mathrm{4p}^{\mathrm{2}} }\:+\sum_{\mathrm{p}=\mathrm{0}} ^{\left[\frac{\mathrm{n}−\mathrm{1}}{\mathrm{2}}\right]\:} \:\frac{\mathrm{1}}{\left(\mathrm{2p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{also}\:\sum_{\mathrm{p}=\mathrm{1}} ^{\left[\frac{\mathrm{n}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{2}} }\:=\sum_{\mathrm{2m}\leqslant\left[\frac{\mathrm{n}}{\mathrm{2}}\right]} \:\:\:\frac{\mathrm{1}}{\mathrm{4m}^{\mathrm{2}} }\:+\sum_{\mathrm{2m}+\mathrm{1}\:\leqslant\left[\frac{\mathrm{n}}{\mathrm{2}}\right]} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2m}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\sum_{\mathrm{m}=\mathrm{1}} ^{\left[\frac{\left[\frac{\mathrm{n}}{\mathrm{2}}\right]}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\mathrm{m}^{\mathrm{2}} }\:+\sum_{\mathrm{m}=\mathrm{0}} ^{\left[\frac{\left[\frac{\mathrm{n}}{\mathrm{2}}\right]−\mathrm{1}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{2m}+\mathrm{1}\right)^{\mathrm{2}} }\:=..... \\ $$$$\mathrm{example}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\mathrm{10}} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\left[\frac{\mathrm{10}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\mathrm{4n}^{\mathrm{2}} }\:+\sum_{\mathrm{n}=\mathrm{0}} ^{\left[\frac{\mathrm{9}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\mathrm{5}} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:+\sum_{\mathrm{n}=\mathrm{0}} ^{\mathrm{4}} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left\{\:\sum_{\mathrm{n}=\mathrm{1}} ^{\left[\frac{\mathrm{5}}{\mathrm{2}}\right]} \:\frac{\mathrm{1}}{\mathrm{4n}^{\mathrm{2}} }\:+\sum_{\mathrm{n}=\mathrm{0}} ^{\mathrm{2}} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} }\right\}\:+\sum_{\mathrm{n}=\mathrm{0}} ^{\mathrm{4}} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }\:\sum_{\mathrm{n}=\mathrm{1}} ^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:\:+\left(\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}\right)\sum_{\mathrm{n}=\mathrm{0}} ^{\mathrm{2}} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} }\:+\sum_{\mathrm{n}=\mathrm{3}} ^{\mathrm{4}} \:\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\right)\:+\frac{\mathrm{5}}{\mathrm{4}}\left(\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{9}}\:+\frac{\mathrm{1}}{\mathrm{25}}\right)\:+\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{9}^{\mathrm{2}} }\:=.... \\ $$

Commented by bachamohamed last updated on 01/Aug/20

thank′s sir

$$\mathrm{thank}'\mathrm{s}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com