Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 105474 by Don08q last updated on 29/Jul/20

Answered by ajfour last updated on 29/Jul/20

Commented by ajfour last updated on 29/Jul/20

BD=(√(25+36−2×5×6cos 30°))          = (√(61−30(√3)))      BD=2Rsin 30° = R  .......

$${BD}=\sqrt{\mathrm{25}+\mathrm{36}−\mathrm{2}×\mathrm{5}×\mathrm{6cos}\:\mathrm{30}°} \\ $$$$\:\:\:\:\:\:\:\:=\:\sqrt{\mathrm{61}−\mathrm{30}\sqrt{\mathrm{3}}} \\ $$$$\:\:\:\:{BD}=\mathrm{2}{R}\mathrm{sin}\:\mathrm{30}°\:=\:{R} \\ $$$$....... \\ $$

Answered by 1549442205PVT last updated on 29/Jul/20

Commented by 1549442205PVT last updated on 01/Aug/20

Apply the cosine theorem for ΔABG  we get:BG=(√(6^2 +5^2 −2.6.5cos30°))=  (√(61−30(√3)))=R(as ΔOBG is isosceles  at O and BOG^(�) =2BAG^(�) =60°).  we have also AC=(r/(sin15°)),sin15°=(((√6)−(√2))/4),cos15°=(((√6)+(√2))/4)  Denote by I the midpoint of side AG  we have AI=3⇒OI=(√(R^2 −9)) .Set   OAI^(�) =ϕ⇒cosϕ=(3/R),sinϕ=(((√(R^2 −9)) )/R)  Apply the cosine theorem for ΔAOC:  OC=(√(R^2 +AC^2 −2AC.Rcos(15°+ϕ)))=  (√(R^2 +(r^2 /(sin^2 15°))−((2Rr)/(sin15°))×(cos15°cosϕ−sin15°sinϕ)))   From the condition that the circle(C)at D  tangent to the circle (O)we have  OC+CD=R⇔OC=R−r.Hence,  (√(R^2 +(r^2 /(sin^2 15°))−((2Rr)/(sin15°))×(cos15°cosϕ−sin15°sinϕ)))  R−r.Squaring two sides of above equality we get:  R^2 +(r^2 /(sin^2 15°))−((2Rr)/(sin15°))×(cos15°cosϕ−sin15°sinϕ)=R^2 −2Rr+r^2   ⇔((4r^2 )/(2−(√3)))−((8Rr)/((√6)−(√2)))×[((3((√6)+(√2)))/(4R))−((((√6)−(√2))(√(R^2 −9)))/(4R))]=r^2 −2Rr  4(2+(√3))r^2 −(r/2)((√6)+(√2))[3((√6)+(√2)−((√6)−(√2))(√(R^2 −9))]  ⇔(7+4(√3))r^2 −3(4+2(√3))r+2r(√(R^2 −9))+2Rr=0  ⇔(7+4(√3))r+[2R−3(4+2(√3))+2(√(52−30(√3) )) )=0  ⇔r=((2(√(61−30(√3))) −3(4+2(√3) )+2(√(52−30(√3))))/(−(7+4(√3) )))≈1,148

$$\mathrm{Apply}\:\mathrm{the}\:\mathrm{cosine}\:\mathrm{theorem}\:\mathrm{for}\:\Delta\mathrm{ABG} \\ $$$$\mathrm{we}\:\mathrm{get}:\mathrm{BG}=\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} −\mathrm{2}.\mathrm{6}.\mathrm{5cos30}°}= \\ $$$$\sqrt{\mathrm{61}−\mathrm{30}\sqrt{\mathrm{3}}}=\mathrm{R}\left(\mathrm{as}\:\Delta\mathrm{OBG}\:\mathrm{is}\:\mathrm{isosceles}\right. \\ $$$$\left.\mathrm{at}\:\mathrm{O}\:\mathrm{and}\:\widehat {\mathrm{BOG}}=\mathrm{2}\widehat {\mathrm{BAG}}=\mathrm{60}°\right). \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{also}\:\mathrm{AC}=\frac{\mathrm{r}}{\mathrm{sin15}°},\mathrm{sin15}°=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}},\mathrm{cos15}°=\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\mathrm{Denote}\:\mathrm{by}\:\mathrm{I}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{side}\:\mathrm{AG} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{AI}=\mathrm{3}\Rightarrow\mathrm{OI}=\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{9}}\:.\mathrm{Set}\: \\ $$$$\widehat {\mathrm{OAI}}=\varphi\Rightarrow\mathrm{cos}\varphi=\frac{\mathrm{3}}{\mathrm{R}},\mathrm{sin}\varphi=\frac{\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{9}}\:}{\mathrm{R}} \\ $$$$\mathrm{Apply}\:\mathrm{the}\:\mathrm{cosine}\:\mathrm{theorem}\:\mathrm{for}\:\Delta\mathrm{AOC}: \\ $$$$\mathrm{OC}=\sqrt{\mathrm{R}^{\mathrm{2}} +\mathrm{AC}^{\mathrm{2}} −\mathrm{2AC}.\mathrm{Rcos}\left(\mathrm{15}°+\varphi\right)}= \\ $$$$\sqrt{\mathrm{R}^{\mathrm{2}} +\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \mathrm{15}°}−\frac{\mathrm{2Rr}}{\mathrm{sin15}°}×\left(\mathrm{cos15}°\mathrm{cos}\varphi−\mathrm{sin15}°\mathrm{sin}\varphi\right)}\: \\ $$$$\mathrm{From}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circle}\left(\mathrm{C}\right)\mathrm{at}\:\mathrm{D} \\ $$$$\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle}\:\left(\mathrm{O}\right)\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{OC}+\mathrm{CD}=\mathrm{R}\Leftrightarrow\mathrm{OC}=\mathrm{R}−\mathrm{r}.\mathrm{Hence}, \\ $$$$\sqrt{\mathrm{R}^{\mathrm{2}} +\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \mathrm{15}°}−\frac{\mathrm{2Rr}}{\mathrm{sin15}°}×\left(\mathrm{cos15}°\mathrm{cos}\varphi−\mathrm{sin15}°\mathrm{sin}\varphi\right)} \\ $$$$\mathrm{R}−\mathrm{r}.\mathrm{Squaring}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{above}\:\mathrm{equality}\:\mathrm{we}\:\mathrm{get}: \\ $$$$\mathrm{R}^{\mathrm{2}} +\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \mathrm{15}°}−\frac{\mathrm{2Rr}}{\mathrm{sin15}°}×\left(\mathrm{cos15}°\mathrm{cos}\varphi−\mathrm{sin15}°\mathrm{sin}\varphi\right)=\mathrm{R}^{\mathrm{2}} −\mathrm{2Rr}+\mathrm{r}^{\mathrm{2}} \\ $$$$\Leftrightarrow\frac{\mathrm{4r}^{\mathrm{2}} }{\mathrm{2}−\sqrt{\mathrm{3}}}−\frac{\mathrm{8Rr}}{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}×\left[\frac{\mathrm{3}\left(\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}\right)}{\mathrm{4R}}−\frac{\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{9}}}{\mathrm{4R}}\right]=\mathrm{r}^{\mathrm{2}} −\mathrm{2Rr} \\ $$$$\mathrm{4}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\mathrm{r}^{\mathrm{2}} −\frac{\mathrm{r}}{\mathrm{2}}\left(\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}\right)\left[\mathrm{3}\left(\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}−\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{9}}\right]\right. \\ $$$$\Leftrightarrow\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)\mathrm{r}^{\mathrm{2}} −\mathrm{3}\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}\right)\mathrm{r}+\mathrm{2r}\sqrt{\mathrm{R}^{\mathrm{2}} −\mathrm{9}}+\mathrm{2Rr}=\mathrm{0} \\ $$$$\Leftrightarrow\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)\mathrm{r}+\left[\mathrm{2R}−\mathrm{3}\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}\right)+\mathrm{2}\sqrt{\mathrm{52}−\mathrm{30}\sqrt{\mathrm{3}}\:}\:\right)=\mathrm{0} \\ $$$$\Leftrightarrow\boldsymbol{\mathrm{r}}=\frac{\mathrm{2}\sqrt{\mathrm{61}−\mathrm{30}\sqrt{\mathrm{3}}}\:−\mathrm{3}\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}\:\right)+\mathrm{2}\sqrt{\mathrm{52}−\mathrm{30}\sqrt{\mathrm{3}}}}{−\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\:\right)}\approx\mathrm{1},\mathrm{148} \\ $$

Commented by Don08q last updated on 29/Jul/20

Thank you Sir

$${Thank}\:{you}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com