Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 105476 by ajfour last updated on 29/Jul/20

Commented by ajfour last updated on 29/Jul/20

Find the mass of the square plate  OABC, if mass density per unit  area is proportional to the  distance from corner O,  given  by  𝛒=kr/a.

$${Find}\:{the}\:{mass}\:{of}\:{the}\:{square}\:{plate} \\ $$$${OABC},\:{if}\:{mass}\:{density}\:{per}\:{unit} \\ $$$${area}\:{is}\:{proportional}\:{to}\:{the} \\ $$$${distance}\:{from}\:{corner}\:{O},\:\:{given} \\ $$$${by}\:\:\boldsymbol{\rho}=\boldsymbol{{kr}}/\boldsymbol{{a}}. \\ $$

Answered by mr W last updated on 29/Jul/20

M=2∫_0 ^(π/4) ∫_0 ^(a/(cos θ)) ρrdrdθ  =((2k)/a)∫_0 ^(π/4) ∫_0 ^(a/(cos θ)) r^2 drdθ  =((2a^2 k)/3)∫_0 ^(π/4) (dθ/(cos^3  θ))  =((2a^2 k)/3)∫_0 ^(π/4) ((d(sin θ))/((1−sin^2  θ)^2 ))  =((a^2 k)/6)[ln ((1+sin θ)/(1−sin θ))−(1/(1+sin θ))+(1/(1−sin θ))]_0 ^(π/4)   =((a^2 k)/6)[ln ((1+(1/(√2)))/(1−(1/(√2))))−(1/(1+(1/(√2))))+(1/(1−(1/(√2))))]  =((a^2 k)/3)[ln ((√2)+1)+(√2)]

$${M}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{\frac{{a}}{\mathrm{cos}\:\theta}} \rho{rdrd}\theta \\ $$$$=\frac{\mathrm{2}{k}}{{a}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \int_{\mathrm{0}} ^{\frac{{a}}{\mathrm{cos}\:\theta}} {r}^{\mathrm{2}} {drd}\theta \\ $$$$=\frac{\mathrm{2}{a}^{\mathrm{2}} {k}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{d}\theta}{\mathrm{cos}^{\mathrm{3}} \:\theta} \\ $$$$=\frac{\mathrm{2}{a}^{\mathrm{2}} {k}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{d}\left(\mathrm{sin}\:\theta\right)}{\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta\right)^{\mathrm{2}} } \\ $$$$=\frac{{a}^{\mathrm{2}} {k}}{\mathrm{6}}\left[\mathrm{ln}\:\frac{\mathrm{1}+\mathrm{sin}\:\theta}{\mathrm{1}−\mathrm{sin}\:\theta}−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:\theta}+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\theta}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\frac{{a}^{\mathrm{2}} {k}}{\mathrm{6}}\left[\mathrm{ln}\:\frac{\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}{\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}−\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}\right] \\ $$$$=\frac{{a}^{\mathrm{2}} {k}}{\mathrm{3}}\left[\mathrm{ln}\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)+\sqrt{\mathrm{2}}\right] \\ $$

Commented by ajfour last updated on 29/Jul/20

Fantastic, Sir. Thanks a lot.

$${Fantastic},\:{Sir}.\:{Thanks}\:{a}\:{lot}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com