Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 105545 by 4635 last updated on 29/Jul/20

calculate ∫_0 ^∞ ((sin x)/x)dx

calculate0sinxxdx

Answered by Ar Brandon last updated on 29/Jul/20

Let f(a)=∫_0 ^∞ ((sinx)/x)∙e^(−ax) dx⇒f ′(a)=−∫_0 ^∞ sinx∙e^(−ax) dx  Let; p=∫_0 ^∞ cosx∙e^(−ax) dx , q=∫_0 ^∞ sinx∙e^(−ax) dx  ⇒p−iq=∫_0 ^∞ (cosx−isinx)e^(−ax) dx=∫_0 ^∞ e^(−ix−ax) dx=∫_0 ^∞ e^(−(a+i)x) dx                   =−(1/(a+i))∙[e^(−(a+i)x) ]_0 ^∞ =(1/(a+i))   {lim_(x→∞) e^(−(a+i)x) =0}                   =((a−i)/(a^2 +1))=(a/(a^2 +1))−i((1/(a^2 +1)))  ⇒ Im(p−iq)=Im{(a/(a^2 +1))−i((1/(a^2 +1)))}⇒q=(1/(a^2 +1))  ⇒f ′(a)=−q=−(1/(a^2 +1))⇒f(a)=−[Arctan(a)+C]  But f(a)=∫_0 ^∞ ((sinx)/x)∙e^(−ax) dx , lim_(a→+∞) f(a)=0  ⇒lim_(a→+∞) [Arctan(a)+C]=0⇒C=−(π/2)  f(0)=∫_0 ^∞ ((sinx)/x)dx=−[Arctan(0)+C]=(π/2)  Hence ∫_0 ^∞ ((sinx)/x)dx=(π/2)

Letf(a)=0sinxxeaxdxf(a)=0sinxeaxdxLet;p=0cosxeaxdx,q=0sinxeaxdxpiq=0(cosxisinx)eaxdx=0eixaxdx=0e(a+i)xdx=1a+i[e(a+i)x]0=1a+i{limex(a+i)x=0}=aia2+1=aa2+1i(1a2+1)Im(piq)=Im{aa2+1i(1a2+1)}q=1a2+1f(a)=q=1a2+1f(a)=[Arctan(a)+C]Butf(a)=0sinxxeaxdx,limfa+(a)=0lima+[Arctan(a)+C]=0C=π2f(0)=0sinxxdx=[Arctan(0)+C]=π2Hence0sinxxdx=π2

Answered by Aziztisffola last updated on 29/Jul/20

 Using Laplace transforms.   L{((sinx)/x)}=∫_s ^( ∞) L{sinx}dt=∫_s ^( ∞) (1/(1+t^2 ))dt  =[arctan(t)]_s ^(t→∞) =(π/2)−arctan(s)  then ∫_0 ^( ∞) e^(−sx)  ((sin x)/x) dx=(π/2)−arctan(s)  let s=0 ⇒∫_0 ^∞ ((sin x)/x)dx=(π/2)−arctan(0)=(π/2)   Hence ∫_0 ^∞ ((sin x)/x)dx=(π/2)

UsingLaplacetransforms.L{sinxx}=sL{sinx}dt=s11+t2dt=[arctan(t)]st=π2arctan(s)then0esxsinxxdx=π2arctan(s)lets=00sinxxdx=π2arctan(0)=π2Hence0sinxxdx=π2

Commented by 4635 last updated on 29/Jul/20

thank you very much

thankyouverymuch

Commented by Aziztisffola last updated on 29/Jul/20

you′re welcome

yourewelcome

Answered by 1549442205PVT last updated on 30/Jul/20

Set I(k,λ)=∫_0 ^∞ e^(−kx) ((sinλx)/x)dx   Differentiate the integration I by λ we get   (dI/dλ)=∫_0 ^∞ e^(−kx) .(1/x).(sinλx)′ dx=∫_0 ^∞ e^(−kx) cosλxdx  =(1/λ)∫_0 ^∞ e^(−kx) dsinλx=((e^(−kx) sinλx)/λ)∣_(x=0) ^∞ +(k/λ)∫_0 ^∞ e^(−kx) sinλxdx  =((e^(−kx) sinλx)/λ)∣_0 ^∞ −(k/λ^2 )∫_0 ^∞ e^(−kx) dcosλx  =(((e^(−kx) sinλx)/λ)−((ke^(−kx) cosλx)/λ^2 ))∣_0 ^∞ −(k^2 /λ^2 )∫e^(−kx) cosλxdx  Thus,(dI/dλ)=(((e^(−kx) sinλx)/λ)−((ke^(−kx) cosλx)/λ^2 ))∣_0 ^∞ −(k^2 /λ).(dI/dλ)  ⇒⇒(1+(k^2 /λ^2 )).(dI/dλ)=(((e^(−kx) sinλx)/λ)−((ke^(−kx) cosλx)/λ^2 ))∣_0 ^∞   (dI/dλ)=((e^(−kx) (λsinλx−kcosλx))/(k^2 +λ^2 ))∣_0 ^∞ =(k/(λ^2 +k^2 ))  ⇒I=tan^(−1) ((λ/k))(as ∫(dx/(x^2 +a^2 ))=(1/a)tan^(−1) ((x/a)))  Consequently,I(k,λ)=∫_0 ^∞ e^(−kx) ((sinλx)/x)dx =tan^(−1) ((λ/k))  It follows that   J=∫_0 ^∞ ((sinλx)/x)dx =lim_(k→0) ∫_0 ^∞ e^(−kx) ((sinλx)/x)dx   =lim_(k→0) tan^(−1) ((λ/k))=(π/2)(if λ>0)  Therefore,K=∫_0 ^∞ ((sinx)/x)dx =(𝛑/2)

SetI(k,λ)=0ekxsinλxxdxDifferentiatetheintegrationIbyλwegetdIdλ=0ekx.1x.(sinλx)dx=0ekxcosλxdx=1λ0ekxdsinλx=ekxsinλxλx=0+kλ0ekxsinλxdx=ekxsinλxλ0kλ20ekxdcosλx=(ekxsinλxλkekxcosλxλ2)0k2λ2ekxcosλxdxThus,dIdλ=(ekxsinλxλkekxcosλxλ2)0k2λ.dIdλ⇒⇒(1+k2λ2).dIdλ=(ekxsinλxλkekxcosλxλ2)0dIdλ=ekx(λsinλxkcosλx)k2+λ20=kλ2+k2I=tan1(λk)(asdxx2+a2=1atan1(xa))Consequently,I(k,λ)=0ekxsinλxxdx=tan1(λk)ItfollowsthatJ=0sinλxxdx=limk00ekxsinλxxdx=limtank01(λk)=π2(ifλ>0)Therefore,K=0sinxxdx=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com