Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 105551 by mr W last updated on 29/Jul/20

In how many different ways can 10  students be divided into 3 groups?

$${In}\:{how}\:{many}\:{different}\:{ways}\:{can}\:\mathrm{10} \\ $$$${students}\:{be}\:{divided}\:{into}\:\mathrm{3}\:{groups}? \\ $$

Answered by adhigenz last updated on 29/Jul/20

It is the same thing as finding how  many possible integer solution for  a+b+c = 10, which a,b,c ≥ 1, since a  certain group must contain at least 1  student.  Let x = a−1, y = b−1, z = c−1  We write the equation as:  x+y+z = 7, for x,y,z ≥ 0  The solution of integer is  (((n+r−1)),((    r−1)) )  =  (((7+3−1)),((    3−1)) )  =  ((9),(2) )  = 36 ways

$$\mathrm{It}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{thing}\:\mathrm{as}\:\mathrm{finding}\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{possible}\:\mathrm{integer}\:\mathrm{solution}\:\mathrm{for} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}\:=\:\mathrm{10},\:\mathrm{which}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\geqslant\:\mathrm{1},\:\mathrm{since}\:\mathrm{a} \\ $$$$\mathrm{certain}\:\mathrm{group}\:\mathrm{must}\:\mathrm{contain}\:\mathrm{at}\:\mathrm{least}\:\mathrm{1} \\ $$$$\mathrm{student}. \\ $$$$\mathrm{Let}\:{x}\:=\:{a}−\mathrm{1},\:{y}\:=\:{b}−\mathrm{1},\:{z}\:=\:{c}−\mathrm{1} \\ $$$$\mathrm{We}\:\mathrm{write}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{as}: \\ $$$${x}+{y}+{z}\:=\:\mathrm{7},\:\mathrm{for}\:{x},{y},{z}\:\geqslant\:\mathrm{0} \\ $$$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{integer}\:\mathrm{is}\:\begin{pmatrix}{{n}+{r}−\mathrm{1}}\\{\:\:\:\:{r}−\mathrm{1}}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{\mathrm{7}+\mathrm{3}−\mathrm{1}}\\{\:\:\:\:\mathrm{3}−\mathrm{1}}\end{pmatrix} \\ $$$$=\:\begin{pmatrix}{\mathrm{9}}\\{\mathrm{2}}\end{pmatrix} \\ $$$$=\:\mathrm{36}\:\mathrm{ways} \\ $$

Commented by mr W last updated on 30/Jul/20

i don′t think both are the same thing.  10 students are distinct, say they are  A,B,C,D,E,F,G,H,I,J.  so for example  A,B,C,D/E,F,G/H,I,J  and  A,B,C,E/D,F,G/H,I,J  are two different ways.

$${i}\:{don}'{t}\:{think}\:{both}\:{are}\:{the}\:{same}\:{thing}. \\ $$$$\mathrm{10}\:{students}\:{are}\:{distinct},\:{say}\:{they}\:{are} \\ $$$${A},{B},{C},{D},{E},{F},{G},{H},{I},{J}. \\ $$$${so}\:{for}\:{example} \\ $$$${A},{B},{C},{D}/{E},{F},{G}/{H},{I},{J} \\ $$$${and} \\ $$$${A},{B},{C},{E}/{D},{F},{G}/{H},{I},{J} \\ $$$${are}\:{two}\:{different}\:{ways}. \\ $$

Answered by 1549442205PVT last updated on 30/Jul/20

  Consider a way of division into 3 groups  such that:one group of two,one group  of two ,one group of six.Since for first  two persons we have C_(10) ^2  ways to choose,  for next two persons have C_8 ^2  ways to   choose but because two −person repeated  .Hence all have (( C_(10) ^2 ×C_8 ^2 )/2)=45×14=530   ways.Similarly,for way of division  (2,3,5) we have C_(10) ^2 ×C_8 ^3 =45×56=2520 ways  iii)For (2,4,4)have ((C_(10) ^2 ×C_8 ^4 )/2)=45.35=1575  iv)For (3,3,4)have ((C_(10) ^3 ×C_7 ^3 )/2)=60.35=2100  Thus,total we have 530+2520+1575+2100  =6725 ways to divide 10 student into  three groups.

$$ \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{way}\:\mathrm{of}\:\mathrm{division}\:\mathrm{into}\:\mathrm{3}\:\mathrm{groups} \\ $$$$\mathrm{such}\:\mathrm{that}:\mathrm{one}\:\mathrm{group}\:\mathrm{of}\:\mathrm{two},\mathrm{one}\:\mathrm{group} \\ $$$$\mathrm{of}\:\mathrm{two}\:,\mathrm{one}\:\mathrm{group}\:\mathrm{of}\:\mathrm{six}.\mathrm{Since}\:\mathrm{for}\:\mathrm{first} \\ $$$$\mathrm{two}\:\mathrm{persons}\:\mathrm{we}\:\mathrm{have}\:\mathrm{C}_{\mathrm{10}} ^{\mathrm{2}} \:\mathrm{ways}\:\mathrm{to}\:\mathrm{choose}, \\ $$$$\mathrm{for}\:\mathrm{next}\:\mathrm{two}\:\mathrm{persons}\:\mathrm{have}\:\mathrm{C}_{\mathrm{8}} ^{\mathrm{2}} \:\mathrm{ways}\:\mathrm{to}\: \\ $$$$\mathrm{choose}\:\mathrm{but}\:\mathrm{because}\:\mathrm{two}\:−\mathrm{person}\:\mathrm{repeated} \\ $$$$.\mathrm{Hence}\:\mathrm{all}\:\mathrm{have}\:\frac{\:\mathrm{C}_{\mathrm{10}} ^{\mathrm{2}} ×\mathrm{C}_{\mathrm{8}} ^{\mathrm{2}} }{\mathrm{2}}=\mathrm{45}×\mathrm{14}=\mathrm{530} \\ $$$$\:\mathrm{ways}.\mathrm{Similarly},\mathrm{for}\:\mathrm{way}\:\mathrm{of}\:\mathrm{division} \\ $$$$\left(\mathrm{2},\mathrm{3},\mathrm{5}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{C}_{\mathrm{10}} ^{\mathrm{2}} ×\mathrm{C}_{\mathrm{8}} ^{\mathrm{3}} =\mathrm{45}×\mathrm{56}=\mathrm{2520}\:\mathrm{ways} \\ $$$$\left.\mathrm{iii}\right)\mathrm{For}\:\left(\mathrm{2},\mathrm{4},\mathrm{4}\right)\mathrm{have}\:\frac{\mathrm{C}_{\mathrm{10}} ^{\mathrm{2}} ×\mathrm{C}_{\mathrm{8}} ^{\mathrm{4}} }{\mathrm{2}}=\mathrm{45}.\mathrm{35}=\mathrm{1575} \\ $$$$\left.\mathrm{iv}\right)\mathrm{For}\:\left(\mathrm{3},\mathrm{3},\mathrm{4}\right)\mathrm{have}\:\frac{\mathrm{C}_{\mathrm{10}} ^{\mathrm{3}} ×\mathrm{C}_{\mathrm{7}} ^{\mathrm{3}} }{\mathrm{2}}=\mathrm{60}.\mathrm{35}=\mathrm{2100} \\ $$$$\mathrm{Thus},\mathrm{total}\:\mathrm{we}\:\mathrm{have}\:\mathrm{530}+\mathrm{2520}+\mathrm{1575}+\mathrm{2100} \\ $$$$=\mathrm{6725}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{divide}\:\mathrm{10}\:\mathrm{student}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{groups}. \\ $$

Commented by mr W last updated on 30/Jul/20

but a group may also have only one  student.

$${but}\:{a}\:{group}\:{may}\:{also}\:{have}\:{only}\:{one} \\ $$$${student}. \\ $$

Commented by 1549442205PVT last updated on 30/Jul/20

If such as then adding  i)(1,1,8)have ((C_(10) ^1 ×C_9 ^1 )/2)=45 ways  ii)(1,2,7)have C_(10) ^1 ×C_9 ^2 =10.36=360 ways  iii)(1,3,6)have  C_(10) ^1 ×C_9 ^3 =10.84=840 ways  iv)(1,4,5)have  C_(10) ^1 ×C_9 ^4 =10.126=1260 ways  S=45+360+840+1260+6725=9230  ways

$$\mathrm{If}\:\mathrm{such}\:\mathrm{as}\:\mathrm{then}\:\mathrm{adding} \\ $$$$\left.\mathrm{i}\right)\left(\mathrm{1},\mathrm{1},\mathrm{8}\right)\mathrm{have}\:\frac{\mathrm{C}_{\mathrm{10}} ^{\mathrm{1}} ×\mathrm{C}_{\mathrm{9}} ^{\mathrm{1}} }{\mathrm{2}}=\mathrm{45}\:\mathrm{ways} \\ $$$$\left.\mathrm{ii}\right)\left(\mathrm{1},\mathrm{2},\mathrm{7}\right)\mathrm{have}\:\mathrm{C}_{\mathrm{10}} ^{\mathrm{1}} ×\mathrm{C}_{\mathrm{9}} ^{\mathrm{2}} =\mathrm{10}.\mathrm{36}=\mathrm{360}\:\mathrm{ways} \\ $$$$\left.\mathrm{iii}\right)\left(\mathrm{1},\mathrm{3},\mathrm{6}\right)\mathrm{have}\:\:\mathrm{C}_{\mathrm{10}} ^{\mathrm{1}} ×\mathrm{C}_{\mathrm{9}} ^{\mathrm{3}} =\mathrm{10}.\mathrm{84}=\mathrm{840}\:\mathrm{ways} \\ $$$$\left.\mathrm{iv}\right)\left(\mathrm{1},\mathrm{4},\mathrm{5}\right)\mathrm{have}\:\:\mathrm{C}_{\mathrm{10}} ^{\mathrm{1}} ×\mathrm{C}_{\mathrm{9}} ^{\mathrm{4}} =\mathrm{10}.\mathrm{126}=\mathrm{1260}\:\mathrm{ways} \\ $$$$\boldsymbol{\mathrm{S}}=\mathrm{45}+\mathrm{360}+\mathrm{840}+\mathrm{1260}+\mathrm{6725}=\mathrm{9230} \\ $$$$\boldsymbol{\mathrm{ways}} \\ $$

Commented by mr W last updated on 30/Jul/20

typo in result for (2,2,6): 45×14=630  instead of 530!   then you get S=9330  this is correct, nice work sir!

$${typo}\:{in}\:{result}\:{for}\:\left(\mathrm{2},\mathrm{2},\mathrm{6}\right):\:\mathrm{45}×\mathrm{14}=\mathrm{630} \\ $$$${instead}\:{of}\:\mathrm{530}!\: \\ $$$${then}\:{you}\:{get}\:{S}=\mathrm{9330} \\ $$$${this}\:{is}\:{correct},\:{nice}\:{work}\:{sir}! \\ $$

Commented by mr W last updated on 30/Jul/20

the coefficient of x^(10)  term from  generating function  ((10!)/(3!))(e^x −1)^3  is 9330.

$${the}\:{coefficient}\:{of}\:{x}^{\mathrm{10}} \:{term}\:{from} \\ $$$${generating}\:{function} \\ $$$$\frac{\mathrm{10}!}{\mathrm{3}!}\left({e}^{{x}} −\mathrm{1}\right)^{\mathrm{3}} \:{is}\:\mathrm{9330}. \\ $$

Commented by mr W last updated on 30/Jul/20

Commented by 1549442205PVT last updated on 30/Jul/20

Thank you Sir!You are welcome.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}!\mathrm{You}\:\mathrm{are}\:\mathrm{welcome}. \\ $$

Commented by mr W last updated on 31/Jul/20

number of ways to place n distinct  objects in k identical boxes is {_k ^n }  which is the stirling number of the  second kind.   {_k ^n }=S_2 (n,k)  {_3 ^(10) }=9330.

$${number}\:{of}\:{ways}\:{to}\:{place}\:{n}\:{distinct} \\ $$$${objects}\:{in}\:{k}\:{identical}\:{boxes}\:{is}\:\left\{_{{k}} ^{{n}} \right\} \\ $$$${which}\:{is}\:{the}\:{stirling}\:{number}\:{of}\:{the} \\ $$$${second}\:{kind}.\: \\ $$$$\left\{_{{k}} ^{{n}} \right\}={S}_{\mathrm{2}} \left({n},{k}\right) \\ $$$$\left\{_{\mathrm{3}} ^{\mathrm{10}} \right\}=\mathrm{9330}. \\ $$

Commented by mr W last updated on 31/Jul/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com