Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 105564 by Ar Brandon last updated on 30/Jul/20

Solve the differential equation;  y′′+4y′+5y=xe^(−2x) sinx

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}; \\ $$$$\mathrm{y}''+\mathrm{4y}'+\mathrm{5y}=\mathrm{xe}^{−\mathrm{2x}} \mathrm{sinx} \\ $$

Answered by bobhans last updated on 30/Jul/20

Homogenous equation  υ^2 +4υ+5=0 →υ=((−4±2i)/2)=−2±i  y_h =e^(−2x) {C_1 cos x+C_2 sin x}   particular solution   y_1 =e^(−2x) cos x⇒y_1 ′=−2e^(−2x) cos x−e^(−2x) sinx  y_2 =e^(−2x) sin x⇒y_2 ′=−2e^(−2x) sin x+e^(−2x) cosx  W= determinant (((           e^(−2x) cos x                                e^(−2x) sin x)),((e^(−2x) (−2cos x−sin x)   e^(−2x) (−2sin x+cos x)))  = e^(−4x) (−2sin xcos x+cos^2 x)−e^(−4x) (−2sinx  cos x −sin^2 x) = e^(−4x)   u_1 =−∫ ((e^(−2x) sin x(xe^(−2x) sin x)dx)/e^(−4x) )  u_1 =−∫ xsin^2 x dx = −∫x((1/2)−(1/2)cos2x)dx  u_1 =−[(1/4)x^2 −((1/4)xcos 2x−(1/8)sin 2x)]  u_1 =−(1/4)x^2 +(1/4)xcos 2x−(1/8)sin 2x  u_2 =∫ ((e^(−2x) cos x(xe^(−2x) sin x)dx)/e^(−4x) )  u_2 = ∫(1/2)xsin 2x dx = −(1/4)xcos 2x+(1/(16))sin2x  y_p = y_1 u_1 +y_2 u_2   y_p = e^(−2x) cos x(−(1/4)x^2 +(1/4)xcos 2x−(1/8)sin2x)  + e^(−2x) sin x(−(1/4)xcos 2x+(1/(16))sin 2x)  General solution   y_G = y_b  + y_p  .★

$${Homogenous}\:{equation} \\ $$$$\upsilon^{\mathrm{2}} +\mathrm{4}\upsilon+\mathrm{5}=\mathrm{0}\:\rightarrow\upsilon=\frac{−\mathrm{4}\pm\mathrm{2}{i}}{\mathrm{2}}=−\mathrm{2}\pm{i} \\ $$$${y}_{{h}} ={e}^{−\mathrm{2}{x}} \left\{{C}_{\mathrm{1}} \mathrm{cos}\:{x}+{C}_{\mathrm{2}} \mathrm{sin}\:{x}\right\}\: \\ $$$${particular}\:{solution}\: \\ $$$${y}_{\mathrm{1}} ={e}^{−\mathrm{2}{x}} \mathrm{cos}\:{x}\Rightarrow{y}_{\mathrm{1}} '=−\mathrm{2}{e}^{−\mathrm{2}{x}} \mathrm{cos}\:{x}−{e}^{−\mathrm{2}{x}} \mathrm{sin}{x} \\ $$$${y}_{\mathrm{2}} ={e}^{−\mathrm{2}{x}} \mathrm{sin}\:{x}\Rightarrow{y}_{\mathrm{2}} '=−\mathrm{2}{e}^{−\mathrm{2}{x}} \mathrm{sin}\:{x}+{e}^{−\mathrm{2}{x}} \mathrm{cos}{x} \\ $$$${W}=\begin{vmatrix}{\:\:\:\:\:\:\:\:\:\:\:{e}^{−\mathrm{2}{x}} \mathrm{cos}\:{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}^{−\mathrm{2}{x}} \mathrm{sin}\:{x}}\\{{e}^{−\mathrm{2}{x}} \left(−\mathrm{2cos}\:{x}−\mathrm{sin}\:{x}\right)\:\:\:{e}^{−\mathrm{2}{x}} \left(−\mathrm{2sin}\:{x}+\mathrm{cos}\:{x}\right.}\end{vmatrix} \\ $$$$=\:{e}^{−\mathrm{4}{x}} \left(−\mathrm{2sin}\:{x}\mathrm{cos}\:{x}+\mathrm{cos}\:^{\mathrm{2}} {x}\right)−{e}^{−\mathrm{4}{x}} \left(−\mathrm{2sin}{x}\right. \\ $$$$\left.\mathrm{cos}\:{x}\:−\mathrm{sin}\:^{\mathrm{2}} {x}\right)\:=\:{e}^{−\mathrm{4}{x}} \\ $$$${u}_{\mathrm{1}} =−\int\:\frac{{e}^{−\mathrm{2}{x}} \mathrm{sin}\:{x}\left({xe}^{−\mathrm{2}{x}} \mathrm{sin}\:{x}\right){dx}}{{e}^{−\mathrm{4}{x}} } \\ $$$${u}_{\mathrm{1}} =−\int\:{x}\mathrm{sin}\:^{\mathrm{2}} {x}\:{dx}\:=\:−\int{x}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos2}{x}\right){dx} \\ $$$${u}_{\mathrm{1}} =−\left[\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{4}}{x}\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin}\:\mathrm{2}{x}\right)\right] \\ $$$${u}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{x}\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin}\:\mathrm{2}{x} \\ $$$${u}_{\mathrm{2}} =\int\:\frac{{e}^{−\mathrm{2}{x}} \mathrm{cos}\:{x}\left({xe}^{−\mathrm{2}{x}} \mathrm{sin}\:{x}\right){dx}}{{e}^{−\mathrm{4}{x}} } \\ $$$${u}_{\mathrm{2}} =\:\int\frac{\mathrm{1}}{\mathrm{2}}{x}\mathrm{sin}\:\mathrm{2}{x}\:{dx}\:=\:−\frac{\mathrm{1}}{\mathrm{4}}{x}\mathrm{cos}\:\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{16}}\mathrm{sin2}{x} \\ $$$${y}_{{p}} =\:{y}_{\mathrm{1}} {u}_{\mathrm{1}} +{y}_{\mathrm{2}} {u}_{\mathrm{2}} \\ $$$${y}_{{p}} =\:{e}^{−\mathrm{2}{x}} \mathrm{cos}\:{x}\left(−\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{x}\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin2}{x}\right) \\ $$$$+\:{e}^{−\mathrm{2}{x}} \mathrm{sin}\:{x}\left(−\frac{\mathrm{1}}{\mathrm{4}}{x}\mathrm{cos}\:\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{16}}\mathrm{sin}\:\mathrm{2}{x}\right) \\ $$$$\mathcal{G}{eneral}\:{solution}\: \\ $$$${y}_{\mathcal{G}} =\:{y}_{{b}} \:+\:{y}_{{p}} \:.\bigstar \\ $$

Commented by Ar Brandon last updated on 30/Jul/20

Thanks, Sir Bobhans. Is this Wronskien's method ?��

Commented by bobhans last updated on 30/Jul/20

yes sir.

$${yes}\:{sir}. \\ $$

Commented by Ar Brandon last updated on 30/Jul/20

OK, gracias

Terms of Service

Privacy Policy

Contact: info@tinkutara.com