Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105565 by mathmax by abdo last updated on 30/Jul/20

let f(x) =x^2 ln(1−x^3 )  1) calculate f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie  3)calculate ∫ f(x)dx

letf(x)=x2ln(1x3)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculatef(x)dx

Answered by mathmax by abdo last updated on 03/Aug/20

1) f(x)=x^2 ln(1−x^3 ) ⇒f^((n)) (x) =Σ_(k=0) ^n C_n ^k  (x^2 )^((k))  (ln(1−x^3 ))^((n−k))   =C_n ^0  x^2 {ln(1−x^3 )}^((n))  +C_n ^1  (2x){ln(1−x^3 )}^((n−1))  +C_n ^2 2{ln(1−x^3 )}^((n−2))   let find {ln(1−x^3 )}^((m))  we have   {ln(1−x^3 )}^((1) )  =((−3x^2 )/(1−x^3 )) =((3x^2 )/(x^3 −1)) =((3x^2 )/((x−1)(x^2  +x+1)))  =((3x^2 )/((x−1)(x−e^(i((2π)/3)) )(x−e^(−((i2π)/3)) ))) =(a/(x−1)) +(b/(x−e^((i2π)/3) )) +(c/((x−e^(−((i2π)/3)) )))  a =1   ,b =((3e^(i((4π)/3)) )/((e^((i2π)/3) −1)(2isin(((2π)/3))))) =((3e^((i4π)/3) )/(i(√3)(e^((i2π)/3) −1)))  b =((3e^(−((i4π)/3)) )/((e^(−((i2π)/3)) −1)(−2i sin(((2π)/3))))) =((−3 e^(−((i4π)/3)) )/(i(√3)(e^(−((i2π)/3)) −1))) so the coefficient are  known ⇒{ln(1−x^3 )}^((m))  =((a/(x−1)))^((m−1))  +((b/(x−e^((i2π)/3) )))^((m−1))   +((c/((x−e^(−((i2π)/3)) ))))^((m−1))  =a (((−1)^(m−1) (m−1)!)/((x−1)^m )) +((b(−1)^(m−1) (m−1)!)/((x−e^((i2π)/3) )))  +((c(−1)^(m−1) (m−1)!)/((x−e^(−((i2π)/3)) )))  =A_n   f^((n)) (x) =x^2  A_n (x)  +2nx A_(n−1) (x) +2C_n ^2  A_(n−2) (x)

1)f(x)=x2ln(1x3)f(n)(x)=k=0nCnk(x2)(k)(ln(1x3))(nk)=Cn0x2{ln(1x3)}(n)+Cn1(2x){ln(1x3)}(n1)+Cn22{ln(1x3)}(n2)letfind{ln(1x3)}(m)wehave{ln(1x3)}(1)=3x21x3=3x2x31=3x2(x1)(x2+x+1)=3x2(x1)(xei2π3)(xei2π3)=ax1+bxei2π3+c(xei2π3)a=1,b=3ei4π3(ei2π31)(2isin(2π3))=3ei4π3i3(ei2π31)b=3ei4π3(ei2π31)(2isin(2π3))=3ei4π3i3(ei2π31)sothecoefficientareknown{ln(1x3)}(m)=(ax1)(m1)+(bxei2π3)(m1)+(c(xei2π3))(m1)=a(1)m1(m1)!(x1)m+b(1)m1(m1)!(xei2π3)+c(1)m1(m1)!(xei2π3)=Anf(n)(x)=x2An(x)+2nxAn1(x)+2Cn2An2(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com