All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 105569 by bemath last updated on 30/Jul/20
x2dydx−3xy−2y2=0
Answered by john santu last updated on 30/Jul/20
dydx=3xy+2y2x2{y=υx⇒dydx=υ+xdυdxυ+xdυdx=3υx2+2υ2x2x2⇒υ+xdυdx=3υ+2υ2xdυdx=2υ+2υ2→dυυ(v+1)=2dxx∫(1v−1v+1)dv=lnCx2ln(vv+1)=lnCx2yy+x=Cx2⇒y=(y+x)Cx2(JS♠⧫)
Commented by bubugne last updated on 30/Jul/20
correctionln(vv+1)=lnCx2ln(yy+x)=lnCx2⇒y=(y+x)Cx2cy−x2y=x3(c=1C)y=x3c−x2verification:x2dydx−3xy−2y2=x23cx2−3x4+2x4(c−x2)2−3x4c−x2−2x6(c−x2)2x2dydx−3xy−2y2=3cx4−x6(c−x2)2−3cx4−3x6(c−x2)2−2x6(c−x2)2x2dydx−3xy−2y2=3cx4−x6−3cx4+3x6−2x6(c−x2)2x2dydx−3xy−2y2=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com