All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 105574 by bemath last updated on 30/Jul/20
∫x−1x+x2lnxdx?
Answered by bobhans last updated on 30/Jul/20
setx=eu,dx=euduI=∫(eu−1)eueu+ue2udu=∫eu−11+ueuduI=∫(eu+ueu1+ueu−1)dusubstitutev=1+ueuI=∫dvv−∫du=lnv−u+cI=ln(1+ueu)−u+cI=ln(1+xlnx)−lnx+c★I=ln(1x+lnx)+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com