Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105613 by Study last updated on 30/Jul/20

f(x)=(1+(1/x))^(x!)             f^′ (x)=????

$${f}\left({x}\right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}!} \:\:\:\:\:\:\:\:\:\:\:\:{f}^{'} \left({x}\right)=???? \\ $$

Answered by mathmax by abdo last updated on 30/Jul/20

f(x) =e^(x!ln(1+(1/x)))  ⇒f^′ (x) =(x!ln(1+(1/x)))^′  f(x) le   =(x!)^′ ln(1+(1/x))+x!(ln(1+(1/x)))^′ f(x)  but  x!=Γ(x+1) =∫_0 ^∞  t^x  e^(−t) dt  =∫_0 ^∞  e^(xlnt)  e^(−t)  dt ⇒  (d/dx)(x!) = ∫_0 ^∞  lnt t^x  e^(−t)  dt   and (d/dx)(ln(1+(1/x)))=((−1)/(x^2 (1+(1/x))))  =((−1)/(x^2  +x)) ⇒f^′ (x) ={ln(1+(1/x))∫_0 ^∞ t^x  e^(−t) lnt dt −((x!)/(x^2  +x))}(1+(1/x))^(x!)

$$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{\mathrm{x}!\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)} \:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)\:=\left(\mathrm{x}!\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)\right)^{'} \:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{le}\: \\ $$$$=\left(\mathrm{x}!\right)^{'} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{x}!\left(\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)\right)^{'} \mathrm{f}\left(\mathrm{x}\right)\:\:\mathrm{but} \\ $$$$\mathrm{x}!=\Gamma\left(\mathrm{x}+\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{x}} \:\mathrm{e}^{−\mathrm{t}} \mathrm{dt}\:\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{\mathrm{xlnt}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:\Rightarrow \\ $$$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}!\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{lnt}\:\mathrm{t}^{\mathrm{x}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:\:\:\mathrm{and}\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)\right)=\frac{−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)\:=\left\{\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\mathrm{x}} \:\mathrm{e}^{−\mathrm{t}} \mathrm{lnt}\:\mathrm{dt}\:−\frac{\mathrm{x}!}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}}\right\}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}!} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com