All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 105619 by bobhans last updated on 30/Jul/20
findGeneralsolutioncotx+cot2x+cot3x=0
Answered by bemath last updated on 30/Jul/20
⇔cot(x)+cot2(x)−12cot(x)+3cot(x)−cot3(x)1−3cot2(x)=0setcot(x)=pp+p2−12p+3p−p31−3p2=011(p2)2−12p2+1=0p2=12±122−4×1122=12±1022→{p2=1;p=±1p2=111;p=±111→{tan(x)=±1tan(x)=±11→{x=±π4+k.πx=±arctan(11)+k.π
Answered by 1549442205PVT last updated on 30/Jul/20
cotx+cot2x+cot3x=0(1)weneedtheconditions:{sinx≠0sin2x≠0sin3x≠0⇔x≠kπ,x≠mπ2,x≠nπ3⇔{x≠nπ3x≠π2+kπ(1)⇔cosxsinx+cos2xsim2x+cos3xsin3x=0⇔sin3xcosx+cos3xsinxsinxsin3x+cos2xsin2x=0⇔sin4xsinxsin3x+cos2xsin2x=0⇔sin4xsin2x+cos2xsinxsin3x=02sin22xcos2x+cos2xsinxsin3x=0⇔cos2x(2sin22x+sinxsin3x)=0i)cos2x=0⇔2x=kπ2⇔x=kπ4ii)2sin22x+sinxsin3x=0⇔8sin2xcos2x+sinx(3sinx−4sin3x)=0⇔sin2x(8cos2x+3−4sin2x)=0⇔8cos2x+3−4(1−cos2x)=0(assinx≠0)⇔12cos2x−1=0⇔cos2x=112⇔cosx=±36⇔x=±cos−1(36)+2mπorx=±cos−1(−36)Thus,thesolutionsofthegivenequationare:x∈{kπ4;±cos−1(36)+2mπ;±cos−1(−36)+2nπ}wherek≠4p,k≠4q+2(p,q∈Z)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com