Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 105619 by bobhans last updated on 30/Jul/20

find General solution cot x+cot 2x+cot3x= 0

findGeneralsolutioncotx+cot2x+cot3x=0

Answered by bemath last updated on 30/Jul/20

⇔cot (x)+((cot^2 (x)−1)/(2cot (x)))+((3cot (x)−cot^3 (x))/(1−3cot^2 (x)))= 0  set cot (x)= p  p + ((p^2 −1)/(2p))+((3p−p^3 )/(1−3p^2 )) = 0  11(p^2 )^2 −12p^2 +1 = 0  p^2  = ((12±(√(12^2 −4×11)))/(22)) = ((12±10)/(22))  → { ((p^2 =1 ; p = ±1)),((p^2 = (1/(11)); p = ±(1/(√(11))))) :}  → { ((tan (x)= ±1)),((tan (x)= ±(√(11)))) :}  → { ((x=±(π/4)+k.π)),((x= ±arc tan ((√(11)))+k.π)) :}

cot(x)+cot2(x)12cot(x)+3cot(x)cot3(x)13cot2(x)=0setcot(x)=pp+p212p+3pp313p2=011(p2)212p2+1=0p2=12±1224×1122=12±1022{p2=1;p=±1p2=111;p=±111{tan(x)=±1tan(x)=±11{x=±π4+k.πx=±arctan(11)+k.π

Answered by 1549442205PVT last updated on 30/Jul/20

cot x+cot 2x+cot3x= 0 (1)  we need the conditions: { ((sinx≠0)),((sin2x≠0)),((sin3x≠0)) :}  ⇔x≠kπ,x≠((mπ)/2),x≠((nπ)/3)⇔ { ((x≠((nπ)/3))),((x≠(π/2)+kπ)) :}  (1)⇔((cosx)/(sinx))+((cos2x)/(sim2x))+((cos3x)/(sin3x))=0  ⇔((sin3xcosx+cos3xsinx)/(sinxsin3x))+((cos2x)/(sin2x))=0  ⇔((sin4x)/(sinxsin3x))+((cos2x)/(sin2x))=0⇔sin4xsin2x+cos2xsinxsin3x=0  2sin^2 2xcos2x+cos2xsinxsin3x=0  ⇔cos2x(2sin^2 2x+sinxsin3x)=0  i)cos2x=0⇔2x=k(π/2)⇔x=((kπ)/4)  ii)2sin^2 2x+sinxsin3x=0⇔8sin^2 xcos^2 x+sinx(3sinx−4sin^3 x)=0  ⇔sin^2 x(8cos^2 x+3−4sin^2 x)=0  ⇔8cos^2 x+3−4(1−cos^2 x)=0 (as sinx≠0)  ⇔12cos^2 x−1=0⇔cos^2 x=(1/(12))⇔cosx=±((√3)/6)  ⇔x=±cos^(−1) (((√3)/6))+2mπ or  x=±cos^(−1) (−((√3)/6))  Thus,the solutions of the given equation are:  x∈{((k𝛑)/4);±cos^(−1) (((√3)/6))+2m𝛑;±cos^(−1) (((−(√3))/6))+2n𝛑}  where k≠4p,k≠4q+2(p,q∈Z)

cotx+cot2x+cot3x=0(1)weneedtheconditions:{sinx0sin2x0sin3x0xkπ,xmπ2,xnπ3{xnπ3xπ2+kπ(1)cosxsinx+cos2xsim2x+cos3xsin3x=0sin3xcosx+cos3xsinxsinxsin3x+cos2xsin2x=0sin4xsinxsin3x+cos2xsin2x=0sin4xsin2x+cos2xsinxsin3x=02sin22xcos2x+cos2xsinxsin3x=0cos2x(2sin22x+sinxsin3x)=0i)cos2x=02x=kπ2x=kπ4ii)2sin22x+sinxsin3x=08sin2xcos2x+sinx(3sinx4sin3x)=0sin2x(8cos2x+34sin2x)=08cos2x+34(1cos2x)=0(assinx0)12cos2x1=0cos2x=112cosx=±36x=±cos1(36)+2mπorx=±cos1(36)Thus,thesolutionsofthegivenequationare:x{kπ4;±cos1(36)+2mπ;±cos1(36)+2nπ}wherek4p,k4q+2(p,qZ)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com