Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 105643 by john santu last updated on 30/Jul/20

lim_(x→0)  ((tan (x−sin x))/(2−(√(4+sin^3  2x))))

limx0tan(xsinx)24+sin32x

Answered by bramlex last updated on 30/Jul/20

lim_(x→0)  ((tan (x−(x−(1/6)x^3 )))/(2−2(√(1+((sin^3 2x)/4))))) =   lim_(x→0)  ((tan ((1/6)x^3 ))/(2(1−(1+((sin^3 2x)/8))))) =  lim_(x→0)  ((tan ((1/6)x^3 ))/(−((8/4)x^3 ))) = −(1/6)×(1/2) = −(1/(12))▲

limx0tan(x(x16x3))221+sin32x4=limx0tan(16x3)2(1(1+sin32x8))=limx0tan(16x3)(84x3)=16×12=112

Answered by Dwaipayan Shikari last updated on 30/Jul/20

lim_(x→0) ((tan(x−x+(x^3 /6)))/(4−4−sin^3 2x))(2+(√(4+sin^3 2x)))  lim_(x→0) ((tan(x^3 /6))/(−(2x)^3 ))(2+(√(4+8x^3 )))=lim_(x→0) ((x^3 /6)/(−8x^3 ))(2+(√4))=−(1/(12))    {   (sin2x)^3 →8x^3

limx0tan(xx+x36)44sin32x(2+4+sin32x)limx0tanx36(2x)3(2+4+8x3)=limx0x368x3(2+4)=112{(sin2x)38x3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com