Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 105704 by 1549442205PVT last updated on 31/Jul/20

Solve the following system of equations:   { ((x^3 y+x^3 y^2 +2x^2 y^2 +x^2 y^3 +xy^3 =30)),((x^2 y+xy+x+y+xy^2 =11)) :}

Solvethefollowingsystemofequations:{x3y+x3y2+2x2y2+x2y3+xy3=30x2y+xy+x+y+xy2=11

Commented by PRITHWISH SEN 2 last updated on 31/Jul/20

from eqn. (i)  xy(x+y)(x+y+xy)=30.........(iii)  from eqn. (ii)  (xy+1)(x+y+1)=12.....(iv)  now put   x+y=a  and xy=b  then (iii)⇒ ab(a+b)=30  (iv)⇒(a+1)(b+1)=12⇒ ab+a+b=11  solving  (a+b,ab)=(5,6) or (6,5)  ∴ (a,b)=(5,1),(1,5),(3,2) or (2,3)  for (5,1)  (x,y)= {((((√7)+(√3))/2))^2 ,((((√7)−(√3))/2))^2 } and {((((√7)−(√3))/2))^2 ,((((√7)+(√3))/2))^2 }  there is no real value for (a,b)=(1,5)  for (3,2)  (x,y)= (2,1) and (1,2)  and no real value for (a,b)=(2,3)

fromeqn.(i)xy(x+y)(x+y+xy)=30.........(iii)fromeqn.(ii)(xy+1)(x+y+1)=12.....(iv)nowputx+y=aandxy=bthen(iii)ab(a+b)=30(iv)(a+1)(b+1)=12ab+a+b=11solving(a+b,ab)=(5,6)or(6,5)(a,b)=(5,1),(1,5),(3,2)or(2,3)for(5,1)(x,y)={(7+32)2,(732)2}and{(732)2,(7+32)2}thereisnorealvaluefor(a,b)=(1,5)for(3,2)(x,y)=(2,1)and(1,2)andnorealvaluefor(a,b)=(2,3)

Commented by PRITHWISH SEN 2 last updated on 31/Jul/20

welcome

welcome

Answered by 1549442205PVT last updated on 31/Jul/20

Set x+y=u,xy=v we have  (1)⇔xy(x^2 +y^2 )+(xy)^2 (x+y)+2(xy)^2 =30  ⇔xy[(x+y)^2 −2xy]+(xy)^2 (x+y)+2(xy)^2 =30  (x+y)^2 (xy)+(xy)^2 (x+y)=30  (2)⇔xy(x+y)+xy+x+y=11.   { ((u^2 v+v^2 u=30)),((uv+i+v=11)) :}⇔ { ((uv(u+v)=30)),((uv+u+v=11)) :}  Set u+v=m,uv=n⇒ { ((m+n=11)),((mn=30)) :}  ⇔(m,n)∈{(5,6),(6,5)}  i)(m,n)=(5,6)⇔(u,v)∈{(3,2),(2,3)}  +(u,v)=(3,2)⇔ { ((x+y=3)),((xy=2)) :}⇔(x,y)∈{(2,1),(1,2)}  +(u,v)=(2,3)⇔ { ((x+y=2)),((xy=3)) :}⇒(x−y)^2 =(x+y)^2 −4xy=−8<0  This case has no roots  ii)(m,n)=(6,5)⇔(u,v)∈{(5,1),(1,5)}  +(u,v)=(5,1)⇔ { ((x+y=5)),((xy=1)) :}⇔ { ((x+y=5)),(((x−y)^2 =(x+y)^2 −4xy=21)) :}  ⇔ { ((x+y=5)),((x−y=±(√(21)))) :} ⇔(x,y)∈{(((5+(√(21)))/2),((5−(√(21)))/2)),(((5−(√(21)))/2),((5+(√(21)))/2))}  +(u,v)=(1,5)⇔ { ((x+y=1)),((xy=5)) :}⇒(x−y)^2 =(x+y)^2 −4xy=−19<0  so this case has no roots  Thus,the given system has four roots:  (x,y)∈{(1,2),(2,1),(((5+(√(21)))/2),((5−(√(21)))/2)),(((5−(√(21)))/2),((5+(√(21)))/2))

Setx+y=u,xy=vwehave(1)xy(x2+y2)+(xy)2(x+y)+2(xy)2=30xy[(x+y)22xy]+(xy)2(x+y)+2(xy)2=30(x+y)2(xy)+(xy)2(x+y)=30(2)xy(x+y)+xy+x+y=11.{u2v+v2u=30uv+i+v=11{uv(u+v)=30uv+u+v=11Setu+v=m,uv=n{m+n=11mn=30(m,n){(5,6),(6,5)}i)(m,n)=(5,6)(u,v){(3,2),(2,3)}+(u,v)=(3,2){x+y=3xy=2(x,y){(2,1),(1,2)}+(u,v)=(2,3){x+y=2xy=3(xy)2=(x+y)24xy=8<0Thiscasehasnorootsii)(m,n)=(6,5)(u,v){(5,1),(1,5)}+(u,v)=(5,1){x+y=5xy=1{x+y=5(xy)2=(x+y)24xy=21{x+y=5xy=±21(x,y){(5+212,5212),(5212,5+212)}+(u,v)=(1,5){x+y=1xy=5(xy)2=(x+y)24xy=19<0sothiscasehasnorootsThus,thegivensystemhasfourroots:(x,y){(1,2),(2,1),(5+212,5212),(5212,5+212)

Commented by 1549442205PVT last updated on 01/Aug/20

Ok,excuse me.Thank you sir.

Ok,excuseme.Thankyousir.

Commented by PRITHWISH SEN 2 last updated on 31/Jul/20

((5+(√(21)))/2) = ((10+2(√(21)))/4) = ((((√7))^2 +((√3))^2 +2.(√7).(√3))/4)  =((((√7)+(√3))/2))^2

5+212=10+2214=(7)2+(3)2+2.7.34=(7+32)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com