Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 105735 by bobhans last updated on 31/Jul/20

What is the cubic polynomial for y(0)=1;  y(1)=0 ; y(2)=1 and y(3)=10

Whatisthecubicpolynomialfory(0)=1;y(1)=0;y(2)=1andy(3)=10

Commented by PRITHWISH SEN 2 last updated on 31/Jul/20

y(x)= (x−1)(ax^2 +bx−1)  y(2)= 4a+2b−1=1⇒2a+b=1  y(3)= 2(9a+3b−1)=10⇒3a+b=2  a=1 b=−1  y(x)=(x−1)(x^2 −x−1)=x^3 −2x^2 +1

y(x)=(x1)(ax2+bx1)y(2)=4a+2b1=12a+b=1y(3)=2(9a+3b1)=103a+b=2a=1b=1y(x)=(x1)(x2x1)=x32x2+1

Answered by bemath last updated on 31/Jul/20

Let y(x)=(x−1){(x−1)+ax(x−2)}  apllying the given condition   y(3)=2.{2+3a(1)}=10  2+3a = 5 ⇒ a = 1   y(x)= (x−1){(x−1)+x(x−2)}  y(x)=(x−1){x^2 −x−1}  y(x)=x^3 −2x^2 +1 .★  verification   y(2)=8−8+1=1  y(0) = 1  y(1)=1−2+1=0  y(3)=27−18+1=10

Lety(x)=(x1){(x1)+ax(x2)}apllyingthegivenconditiony(3)=2.{2+3a(1)}=102+3a=5a=1y(x)=(x1){(x1)+x(x2)}y(x)=(x1){x2x1}y(x)=x32x2+1.verificationy(2)=88+1=1y(0)=1y(1)=12+1=0y(3)=2718+1=10

Answered by floor(10²Eta[1]) last updated on 31/Jul/20

y(0)=1⇒y(x)=a(x)(x)+1  y(1)=a(1)+1=0⇒a(1)=−1  ⇒a(x)=b(x)(x−1)−1  ⇒y(x)=[b(x)(x−1)−1]x+1  y(2)=[b(2)−1].2+1=1⇒b(2)=1  ⇒b(x)=c(x)(x−2)+1  ⇒y(x)=[[c(x)(x−2)+1].(x−1)−1]x+1  y(3)=[[c(3)+1].2−1].3+1=10⇒c(3)=1  ⇒c(x)=1 (constant bc y(x) is cubic)  ⇒y(x)=[(x−1)(x−1)−1].x+1  y(x)=[x^2 −2x].x+1  ⇒y(x)=x^3 −2x^2 +1

y(0)=1y(x)=a(x)(x)+1y(1)=a(1)+1=0a(1)=1a(x)=b(x)(x1)1y(x)=[b(x)(x1)1]x+1y(2)=[b(2)1].2+1=1b(2)=1b(x)=c(x)(x2)+1y(x)=[[c(x)(x2)+1].(x1)1]x+1y(3)=[[c(3)+1].21].3+1=10c(3)=1c(x)=1(constantbcy(x)iscubic)y(x)=[(x1)(x1)1].x+1y(x)=[x22x].x+1y(x)=x32x2+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com