Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105781 by IE last updated on 31/Jul/20

Please, I need help.  Exercise  We have :  J_n = ∫_0 ^( (π/4)) tan^n (x) dx    1) Establish a recurrence relation  between J_(n+2)  and J_n .  2) Calculate J_0  and J_1 , then  deduce the expression of J_n  as a  function of n.  The deduction of the last  question, please.

$$\mathrm{Please},\:\mathrm{I}\:\mathrm{need}\:\mathrm{help}. \\ $$$$\mathrm{Exercise} \\ $$$$\mathrm{We}\:\mathrm{have}\:: \\ $$$$\mathrm{J}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \mathrm{tan}^{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Establish}\:\mathrm{a}\:\mathrm{recurrence}\:\mathrm{relation} \\ $$$$\mathrm{between}\:\boldsymbol{\mathrm{J}}_{\boldsymbol{\mathrm{n}}+\mathrm{2}} \:\mathrm{and}\:\boldsymbol{\mathrm{J}}_{\boldsymbol{\mathrm{n}}} . \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Calculate}\:\boldsymbol{\mathrm{J}}_{\mathrm{0}} \:\mathrm{and}\:\boldsymbol{\mathrm{J}}_{\mathrm{1}} ,\:\mathrm{then} \\ $$$$\mathrm{deduce}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{of}\:\boldsymbol{\mathrm{J}}_{\boldsymbol{\mathrm{n}}} \:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{function}\:\mathrm{of}\:\boldsymbol{\mathrm{n}}. \\ $$$$\mathrm{The}\:\mathrm{deduction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last} \\ $$$$\mathrm{question},\:\mathrm{please}. \\ $$

Commented by prakash jain last updated on 31/Jul/20

q2088 for n odd

$${q}\mathrm{2088}\:{for}\:{n}\:{odd} \\ $$

Answered by prakash jain last updated on 31/Jul/20

∫_0 ^(π/4) tan^n xdx=∫_0 ^(π/4) tan^(n−2) x(sec^2 x−1)dx  =∫_0 ^(π/4) tan^(n−2) xsec^2 xdx−∫_0 ^(π/4) tan^(n−2) xdx  I_n =[((tan^(n−1) x)/(n−1))]_0 ^(π/4) −I_(n−2)   I_n =(1/(n−1))−I_(n−2)   I_0 =∫_0 ^(π/4) dx=(π/4)  I_1 =∫_0 ^(π/4) tan xdx=((ln 2)/2)  I_2 =1−I_0   I_3 =(1/2)−I_1   I_4 =(1/3)−1+I_0   I_6 =(1/5)−(1/3)+1−I_0   I_(2n) =(−1)^n [(π/4)+Σ_(m=1) ^n  (((−1)^m )/(2m−1))]  Question 2088 for n odd (2n+1)

$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{tan}^{{n}} {xdx}=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{tan}^{{n}−\mathrm{2}} {x}\left(\mathrm{sec}^{\mathrm{2}} {x}−\mathrm{1}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{tan}^{{n}−\mathrm{2}} {x}\mathrm{sec}^{\mathrm{2}} {xdx}−\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{tan}^{{n}−\mathrm{2}} {xdx} \\ $$$${I}_{{n}} =\left[\frac{\mathrm{tan}^{{n}−\mathrm{1}} {x}}{{n}−\mathrm{1}}\right]_{\mathrm{0}} ^{\pi/\mathrm{4}} −{I}_{{n}−\mathrm{2}} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \\ $$$${I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\pi/\mathrm{4}} {dx}=\frac{\pi}{\mathrm{4}} \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{tan}\:{xdx}=\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}} \\ $$$${I}_{\mathrm{2}} =\mathrm{1}−{I}_{\mathrm{0}} \\ $$$${I}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}−{I}_{\mathrm{1}} \\ $$$${I}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}+{I}_{\mathrm{0}} \\ $$$${I}_{\mathrm{6}} =\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}−{I}_{\mathrm{0}} \\ $$$${I}_{\mathrm{2}{n}} =\left(−\mathrm{1}\right)^{{n}} \left[\frac{\pi}{\mathrm{4}}+\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{m}} }{\mathrm{2}{m}−\mathrm{1}}\right] \\ $$$$\mathrm{Question}\:\mathrm{2088}\:\mathrm{for}\:{n}\:\mathrm{odd}\:\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$

Commented by IE last updated on 31/Jul/20

thanks sir! I am waiting more  than the answer to the last  question (deduction).

$$\mathrm{thanks}\:\mathrm{sir}!\:\mathrm{I}\:\mathrm{am}\:\mathrm{waiting}\:\mathrm{more} \\ $$$$\mathrm{than}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{the}\:\mathrm{last} \\ $$$$\mathrm{question}\:\left(\mathrm{deduction}\right). \\ $$

Commented by prakash jain last updated on 31/Jul/20

I am not able derive closed  form formula. Summation  notation formula is what i have.  i will continue to think.

$$\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{able}\:\mathrm{derive}\:\mathrm{closed} \\ $$$$\mathrm{form}\:\mathrm{formula}.\:\mathrm{Summation} \\ $$$$\mathrm{notation}\:\mathrm{formula}\:\mathrm{is}\:\mathrm{what}\:\mathrm{i}\:\mathrm{have}. \\ $$$$\mathrm{i}\:\mathrm{will}\:\mathrm{continue}\:\mathrm{to}\:\mathrm{think}. \\ $$

Commented by prakash jain last updated on 31/Jul/20

Even n formula is above. Odd  n i have mentioned the question  where it is derived  I_(2n+1) =(−1)^n ((1/2)ln2+Σ_(m=1) ^n (((−1)^m )/(2m)))

$$\mathrm{Even}\:{n}\:\mathrm{formula}\:\mathrm{is}\:\mathrm{above}.\:\mathrm{Odd} \\ $$$${n}\:\mathrm{i}\:\mathrm{have}\:\mathrm{mentioned}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{where}\:\mathrm{it}\:\mathrm{is}\:\mathrm{derived} \\ $$$${I}_{\mathrm{2}{n}+\mathrm{1}} =\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}+\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}} }{\mathrm{2}{m}}\right) \\ $$

Commented by IE last updated on 31/Jul/20

Thanks!

$$\mathrm{Thanks}!\:\: \\ $$

Commented by IE last updated on 31/Jul/20

Thank you very much Sir! Show me  the summation formula, I′m curious  to see what it might look like.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}!\:\mathrm{Show}\:\mathrm{me} \\ $$$$\mathrm{the}\:\mathrm{summation}\:\mathrm{formula},\:\mathrm{I}'\mathrm{m}\:\mathrm{curious} \\ $$$$\mathrm{to}\:\mathrm{see}\:\mathrm{what}\:\mathrm{it}\:\mathrm{might}\:\mathrm{look}\:\mathrm{like}. \\ $$

Commented by 1549442205PVT last updated on 01/Aug/20

Why do Sir don′t use the  formular   I_n =(1/(n−1))−I_(n−2 ) to calculate in the case  n is odd like as did forI_5  .Please,sir can  explain ?

$$\mathrm{Why}\:\mathrm{do}\:\mathrm{Sir}\:\mathrm{don}'\mathrm{t}\:\mathrm{use}\:\mathrm{the}\:\:\mathrm{formular}\: \\ $$$$\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}−\mathrm{1}}−\mathrm{I}_{\mathrm{n}−\mathrm{2}\:} \mathrm{to}\:\mathrm{calculate}\:\mathrm{in}\:\mathrm{the}\:\mathrm{case} \\ $$$$\mathrm{n}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{like}\:\mathrm{as}\:\mathrm{did}\:\mathrm{forI}_{\mathrm{5}} \:.\mathrm{Please},\mathrm{sir}\:\mathrm{can} \\ $$$$\mathrm{explain}\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com