Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105885 by mohammad17 last updated on 01/Aug/20

Answered by bemath last updated on 01/Aug/20

sin (x)+cos (x) = (√2) cos (x−(π/4))  ∫ (1/(√2)) sec (x−(π/4)) dx =   (1/((√2) )) ln ∣sec (x−(π/4))+tan (x−(π/4))∣+C  (1/((√2) ))ln ∣(((√2) +sin x−cos x)/(sin x+cos x))∣ +C

sin(x)+cos(x)=2cos(xπ4)12sec(xπ4)dx=12lnsec(xπ4)+tan(xπ4)+C12ln2+sinxcosxsinx+cosx+C

Commented by mohammad17 last updated on 01/Aug/20

very thank you sir

verythankyousir

Commented by bemath last updated on 01/Aug/20

(1/(cos (x−(π/4)))) + ((sin (x−(π/4)))/(cos (x−(π/4)))) =  ((1+(1/(√2)) sin x−(1/(√2)) cos x)/((1/(√2)) cos x+(1/(√2))sin x)) =  (((√2) +sin x−cos x)/(cos x+sin x))

1cos(xπ4)+sin(xπ4)cos(xπ4)=1+12sinx12cosx12cosx+12sinx=2+sinxcosxcosx+sinx

Answered by Dwaipayan Shikari last updated on 01/Aug/20

2∫(1/(((2t)/(1+t^2 ))+((1−t^2 )/(1+t^2 )))).(1/(1+t^2 ))dt     (tan(x/2)=t)   (1/2) sec^2 (x/2)=(dt/dx) ,  sec^2 (x/2)=1+t^2   2∫(1/(1+2t−t^2 ))  −2∫(1/((t^2 −2t+1)−2))=−2∫(1/((t−1)^2 −((√2))^2 ))=−2(1/(2(√2)))log(((t−1−(√2))/(t−1+(√2))))+C  =(1/(√2))log(((t−1+(√2))/(t−1−(√2))))+C=(1/(√2))log(((tan(x/2)−1+(√2))/(tan(x/2)−1−(√2))))+C

212t1+t2+1t21+t2.11+t2dt(tanx2=t)12sec2x2=dtdx,sec2x2=1+t2211+2tt221(t22t+1)2=21(t1)2(2)2=2122log(t12t1+2)+C=12log(t1+2t12)+C=12log(tanx21+2tanx212)+C

Answered by Coronavirus last updated on 01/Aug/20

sinx+cosx=(√2)cos(x−(π/4))  (1/(cosa))=((cosa)/(cos^2 a))=((cosa)/(1−sin^2 a))=(((d(sina))/da)/(1−(sina)^2 ))=d(argth(sina))/da=((d((1/2)ln(((1+sina)/(1−sina)))))/da)    yet ∫(1/(sin(x)+cos(x)))dx=(1/(√2))∫(1/(cos(x−(π/4))   ))dx                                                              =(1/(√2))argth(sin(x−(π/4)))+C                                                          =(1/(2(√2)))ln(((1+sin(x−(π/4)))/(1−sin(x−(π/4)))))+C  so  ∫(1/(sin(x)+cos(x)))dx=(1/(2(√2)))ln(((1+sin(x−(π/4)))/(1−sin(x−(π/4)))))+C

sinx+cosx=2cos(xπ4)1cosa=cosacos2a=cosa1sin2a=d(sina)da1(sina)2=d(argth(sina))/da=d(12ln(1+sina1sina))dayet1sin(x)+cos(x)dx=121cos(xπ4)dx=12argth(sin(xπ4))+C=122ln(1+sin(xπ4)1sin(xπ4))+Cso1sin(x)+cos(x)dx=122ln(1+sin(xπ4)1sin(xπ4))+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com