Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 105904 by bemath last updated on 01/Aug/20

∫ ((sin x)/(5−sin 2x)) dx ?

$$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{5}−\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:? \\ $$

Answered by bemath last updated on 01/Aug/20

Commented by Her_Majesty last updated on 01/Aug/20

((4ϑ)/(5ϑ^4 +4ϑ^3 +10ϑ^2 −4ϑ+5))=  =((4ϑ)/(5(ϑ^2 +((2(1−(√6)))/5)ϑ+((7−2(√6))/5))(ϑ^2 +((2(1+(√6)))/5)ϑ+((7+2(√6))/5))))  now simply decompose and solve

$$\frac{\mathrm{4}\vartheta}{\mathrm{5}\vartheta^{\mathrm{4}} +\mathrm{4}\vartheta^{\mathrm{3}} +\mathrm{10}\vartheta^{\mathrm{2}} −\mathrm{4}\vartheta+\mathrm{5}}= \\ $$$$=\frac{\mathrm{4}\vartheta}{\mathrm{5}\left(\vartheta^{\mathrm{2}} +\frac{\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{6}}\right)}{\mathrm{5}}\vartheta+\frac{\mathrm{7}−\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{5}}\right)\left(\vartheta^{\mathrm{2}} +\frac{\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{6}}\right)}{\mathrm{5}}\vartheta+\frac{\mathrm{7}+\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{5}}\right)} \\ $$$${now}\:{simply}\:{decompose}\:{and}\:{solve} \\ $$

Answered by 1549442205PVT last updated on 02/Aug/20

set x=(π/2)−u ⇒dx=−du,sinx=sin((π/2)−u)=cosu  sin2x=sin2((π/2)−u)=sin(π−2u)=sin2u  ⇒F=∫ ((sinxdx)/(5−sin2x))=∫((−cosu)/(5−sin2u))du  Hence 2F=∫ ((sinxdx)/(5−sin2x))−∫ ((cosxdx)/(5−sin2x))  =∫ ((sinx−cosx)/(5−sin2x))dx=∫ ((sinx−cosx)/(4+(1−sin2x)))dx  =∫ (((sinx−cosx)dx)/(4+(sinx−cosx)^2 ))=∫ (((√2)sin((π/4)−x)dx)/(4+2sin^2 ((π/4)−x)))  Set cos((π/4)−x)=t⇒dt=sin((π/4)−x)dx  2F=∫ (((√2)dt)/(4+2(1−t^2 )))=∫ (((√2) dt)/(6−2t^2 )).(Since ∫(dx/(x^2 −a^2 ))=(1/(2a))ln∣((x−a)/(x+a))∣)  =−((√2)/2)×∫ (dt/(t^2 −((√(3)^2  ))))=−((√2)/2)×(1/(2(√3)))ln∣((t−(√3))/(t+(√3)))∣  ⇒F=−((√2)/(8(√3)))ln∣((t−(√3))/(t+(√3)))∣=−((√2)/(8(√3)))ln∣((cos((π/4)−x)−(√3))/(cos((π/4)−x)+(√3)))∣  Please,the friends check to help  me.  Is it correct?

$$\mathrm{set}\:\mathrm{x}=\frac{\pi}{\mathrm{2}}−\mathrm{u}\:\Rightarrow\mathrm{dx}=−\mathrm{du},\mathrm{sinx}=\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}−\mathrm{u}\right)=\mathrm{cosu} \\ $$$$\mathrm{sin2x}=\mathrm{sin2}\left(\frac{\pi}{\mathrm{2}}−\mathrm{u}\right)=\mathrm{sin}\left(\pi−\mathrm{2u}\right)=\mathrm{sin2u} \\ $$$$\Rightarrow\mathrm{F}=\int\:\frac{\mathrm{sinxdx}}{\mathrm{5}−\mathrm{sin2x}}=\int\frac{−\mathrm{cosu}}{\mathrm{5}−\mathrm{sin2u}}\mathrm{du} \\ $$$$\mathrm{Hence}\:\mathrm{2F}=\int\:\frac{\mathrm{sinxdx}}{\mathrm{5}−\mathrm{sin2x}}−\int\:\frac{\mathrm{cosxdx}}{\mathrm{5}−\mathrm{sin2x}} \\ $$$$=\int\:\frac{\mathrm{sinx}−\mathrm{cosx}}{\mathrm{5}−\mathrm{sin2x}}\mathrm{dx}=\int\:\frac{\mathrm{sinx}−\mathrm{cosx}}{\mathrm{4}+\left(\mathrm{1}−\mathrm{sin2x}\right)}\mathrm{dx} \\ $$$$=\int\:\frac{\left(\mathrm{sinx}−\mathrm{cosx}\right)\mathrm{dx}}{\mathrm{4}+\left(\mathrm{sinx}−\mathrm{cosx}\right)^{\mathrm{2}} }=\int\:\frac{\sqrt{\mathrm{2}}\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)\mathrm{dx}}{\mathrm{4}+\mathrm{2sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)} \\ $$$$\mathrm{Set}\:\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)=\mathrm{t}\Rightarrow\mathrm{dt}=\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{2F}=\int\:\frac{\sqrt{\mathrm{2}}\mathrm{dt}}{\mathrm{4}+\mathrm{2}\left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)}=\int\:\frac{\sqrt{\mathrm{2}}\:\mathrm{dt}}{\mathrm{6}−\mathrm{2t}^{\mathrm{2}} }.\left(\mathrm{Since}\:\int\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2a}}\mathrm{ln}\mid\frac{\mathrm{x}−\mathrm{a}}{\mathrm{x}+\mathrm{a}}\mid\right) \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}×\int\:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} −\left(\sqrt{\left.\mathrm{3}\right)^{\mathrm{2}} \:}\right.}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\mathrm{ln}\mid\frac{\mathrm{t}−\sqrt{\mathrm{3}}}{\mathrm{t}+\sqrt{\mathrm{3}}}\mid \\ $$$$\Rightarrow\boldsymbol{\mathrm{F}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{8}\sqrt{\mathrm{3}}}\boldsymbol{\mathrm{ln}}\mid\frac{\boldsymbol{\mathrm{t}}−\sqrt{\mathrm{3}}}{\boldsymbol{\mathrm{t}}+\sqrt{\mathrm{3}}}\mid=−\frac{\sqrt{\mathrm{2}}}{\mathrm{8}\sqrt{\mathrm{3}}}\boldsymbol{\mathrm{ln}}\mid\frac{\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)−\sqrt{\mathrm{3}}}{\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)+\sqrt{\mathrm{3}}}\mid \\ $$$$\boldsymbol{\mathrm{Please}},\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{friends}}\:\boldsymbol{\mathrm{check}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{help}}\:\:\boldsymbol{\mathrm{me}}. \\ $$$$\boldsymbol{\mathrm{Is}}\:\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{correct}}? \\ $$

Commented by bemath last updated on 02/Aug/20

cooll.....and great

$${cooll}.....{and}\:{great} \\ $$

Commented by Ar Brandon last updated on 02/Aug/20

I think it would have been right in case we had integral  limits. In that case x and u would have been considered  as dummy variables. But here u remains a function in terms  of x.  ∫_a ^b f(x)dx=[F(x)]_a ^b =F(b)−F(a)  ∫_a ^b f(u)du=[F(u)]_a ^b =F(b)−F(a)  ⇒∫_a ^b f(x)dx=∫_a ^b f(u)du  But without limits we′ll have;  ∫f(x)dx=F(x)+C  ∫f(u)du=F(u)+K  F(x)+C≠F(u)+K

$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{would}\:\mathrm{have}\:\mathrm{been}\:\mathrm{right}\:\mathrm{in}\:\mathrm{case}\:\mathrm{we}\:\mathrm{had}\:\mathrm{integral} \\ $$$$\mathrm{limits}.\:\mathrm{In}\:\mathrm{that}\:\mathrm{case}\:\mathrm{x}\:\mathrm{and}\:\mathrm{u}\:\mathrm{would}\:\mathrm{have}\:\mathrm{been}\:\mathrm{considered} \\ $$$$\mathrm{as}\:\mathrm{dummy}\:\mathrm{variables}.\:\mathrm{But}\:\mathrm{here}\:\mathrm{u}\:\mathrm{remains}\:\mathrm{a}\:\mathrm{function}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{x}. \\ $$$$\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\left[\mathrm{F}\left(\mathrm{x}\right)\right]_{\mathrm{a}} ^{\mathrm{b}} =\mathrm{F}\left(\mathrm{b}\right)−\mathrm{F}\left(\mathrm{a}\right) \\ $$$$\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{u}\right)\mathrm{du}=\left[\mathrm{F}\left(\mathrm{u}\right)\right]_{\mathrm{a}} ^{\mathrm{b}} =\mathrm{F}\left(\mathrm{b}\right)−\mathrm{F}\left(\mathrm{a}\right) \\ $$$$\Rightarrow\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{u}\right)\mathrm{du} \\ $$$$\mathrm{But}\:\mathrm{without}\:\mathrm{limits}\:\mathrm{we}'\mathrm{ll}\:\mathrm{have}; \\ $$$$\int\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{F}\left(\mathrm{x}\right)+\mathrm{C} \\ $$$$\int\mathrm{f}\left(\mathrm{u}\right)\mathrm{du}=\mathrm{F}\left(\mathrm{u}\right)+\mathrm{K} \\ $$$$\mathrm{F}\left(\mathrm{x}\right)+\mathrm{C}\neq\mathrm{F}\left(\mathrm{u}\right)+\mathrm{K} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com