Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105940 by Dwaipayan Shikari last updated on 01/Aug/20

∫_0 ^1 log(tanθ)dθ

01log(tanθ)dθ

Answered by mathmax by abdo last updated on 01/Aug/20

A =∫_0 ^1 ln(tanθ)dθ  by parts A = [θln(tanθ)]_0 ^1 −∫_0 ^1 θ×((1+tan^2 θ)/(tanθ)) dθ  =ln((π/4))−∫_0 ^1 θ{(1/(tanθ)) +tanθ}dθ   changement tanθ =x give  ∫_0 ^1 θ{(1/(tanθ)) +tanθ }dθ =∫_0 ^(tan(1))  arctanx{(1/x) +x}(dx/(1+x^2 ))  =∫_0 ^(tan(1))  ((1+x^2 )/x) ×((arctanx)/(1+x^2 ))dx  =∫_0 ^(tan(1))  ((arctan(x))/x)dx  let f(a) =∫_0 ^(tan(1))  ((arctan(αx))/x)dx ⇒f^′ (a) =∫_0 ^(tan(1))  (x/((1+α^2 x^2 )x))dx  =∫_0 ^(tan(1))  (dx/(1+α^2 x^2 )) =_(αx =z)    ∫_0 ^(αtan(1))  (dz/(α(1+z^2 ))) =(1/α)[arctanz]_0 ^(αtan(1))   =((arctan(αtan(1)))/α) ⇒f(α) =∫_0 ^α ((arctan(utan(1)))/u) du + C  and ∫_0 ^(tan(1))  ((arctanx)/x)dx =f(1) =∫_0 ^1  ((arctan(utan(1)))/u) du +C  ..be continued...

A=01ln(tanθ)dθbypartsA=[θln(tanθ)]0101θ×1+tan2θtanθdθ=ln(π4)01θ{1tanθ+tanθ}dθchangementtanθ=xgive01θ{1tanθ+tanθ}dθ=0tan(1)arctanx{1x+x}dx1+x2=0tan(1)1+x2x×arctanx1+x2dx=0tan(1)arctan(x)xdxletf(a)=0tan(1)arctan(αx)xdxf(a)=0tan(1)x(1+α2x2)xdx=0tan(1)dx1+α2x2=αx=z0αtan(1)dzα(1+z2)=1α[arctanz]0αtan(1)=arctan(αtan(1))αf(α)=0αarctan(utan(1))udu+Cand0tan(1)arctanxxdx=f(1)=01arctan(utan(1))udu+C..becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com