All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 105940 by Dwaipayan Shikari last updated on 01/Aug/20
∫01log(tanθ)dθ
Answered by mathmax by abdo last updated on 01/Aug/20
A=∫01ln(tanθ)dθbypartsA=[θln(tanθ)]01−∫01θ×1+tan2θtanθdθ=ln(π4)−∫01θ{1tanθ+tanθ}dθchangementtanθ=xgive∫01θ{1tanθ+tanθ}dθ=∫0tan(1)arctanx{1x+x}dx1+x2=∫0tan(1)1+x2x×arctanx1+x2dx=∫0tan(1)arctan(x)xdxletf(a)=∫0tan(1)arctan(αx)xdx⇒f′(a)=∫0tan(1)x(1+α2x2)xdx=∫0tan(1)dx1+α2x2=αx=z∫0αtan(1)dzα(1+z2)=1α[arctanz]0αtan(1)=arctan(αtan(1))α⇒f(α)=∫0αarctan(utan(1))udu+Cand∫0tan(1)arctanxxdx=f(1)=∫01arctan(utan(1))udu+C..becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com