Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 106222 by Rasheed.Sindhi last updated on 03/Aug/20

Determine x & y such that:  lcm(x,y)−gcd(x,y)=x+y.

$$\mathcal{D}{etermine}\:{x}\:\&\:{y}\:{such}\:{that}: \\ $$ $$\mathrm{lcm}\left({x},{y}\right)−\mathrm{gcd}\left({x},{y}\right)={x}+{y}. \\ $$

Commented byRasheed.Sindhi last updated on 03/Aug/20

Thanks sir 〽️�� ��

Commented byRasheed.Sindhi last updated on 03/Aug/20

Reposted for answer.

$${Reposted}\:{for}\:{answer}. \\ $$

Commented bymr W last updated on 03/Aug/20

nice question!    one kind of solutions:  x and y are coprime,   gcd(x,y)=1  lcm(x,y)=xy  xy−1=x+y  ⇒y=((x+1)/(x−1))=1+(2/(x−1))  two solutions:  x=2, y=3  x=3, y=2    an other kind of solutions:  x=prime  y=kx>x  gcd(x,y)=k  lcm(x,y)=kx  kx−k=x+kx  k=−x<0 ⇒no solution

$${nice}\:{question}! \\ $$ $$ \\ $$ $${one}\:{kind}\:{of}\:{solutions}: \\ $$ $${x}\:{and}\:{y}\:{are}\:{coprime},\: \\ $$ $${gcd}\left({x},{y}\right)=\mathrm{1} \\ $$ $${lcm}\left({x},{y}\right)={xy} \\ $$ $${xy}−\mathrm{1}={x}+{y} \\ $$ $$\Rightarrow{y}=\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{1}+\frac{\mathrm{2}}{{x}−\mathrm{1}} \\ $$ $${two}\:{solutions}: \\ $$ $${x}=\mathrm{2},\:{y}=\mathrm{3} \\ $$ $${x}=\mathrm{3},\:{y}=\mathrm{2} \\ $$ $$ \\ $$ $${an}\:{other}\:{kind}\:{of}\:{solutions}: \\ $$ $${x}={prime} \\ $$ $${y}={kx}>{x} \\ $$ $${gcd}\left({x},{y}\right)={k} \\ $$ $${lcm}\left({x},{y}\right)={kx} \\ $$ $${kx}−{k}={x}+{kx} \\ $$ $${k}=−{x}<\mathrm{0}\:\Rightarrow{no}\:{solution} \\ $$

Commented byRasheed.Sindhi last updated on 03/Aug/20

Actually sir I see the problem as  ♮If  {lcm(x,y)−gcd(x,y)}:(x+y)=1:1  then x:y=2:3 or 3:2ε  This can be generalized as:  ♮If {lcm(x,y)−gcd(x,y)}:(x+y)=p:q  then m & n can be determined  such that x:y=m:n or n:mε

$${Actually}\:{sir}\:{I}\:{see}\:{the}\:{problem}\:{as} \\ $$ $$\natural{If} \\ $$ $$\left\{\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)−\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)\right\}:\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{1}:\mathrm{1} \\ $$ $$\mathrm{then}\:\mathrm{x}:\mathrm{y}=\mathrm{2}:\mathrm{3}\:\mathrm{or}\:\mathrm{3}:\mathrm{2}\varepsilon \\ $$ $$\mathrm{This}\:\mathrm{can}\:\mathrm{be}\:\mathrm{generalized}\:\mathrm{as}: \\ $$ $$\natural\mathrm{If}\:\left\{\mathrm{lcm}\left(\mathrm{x},\mathrm{y}\right)−\mathrm{gcd}\left(\mathrm{x},\mathrm{y}\right)\right\}:\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{p}:\mathrm{q} \\ $$ $$\mathrm{then}\:\mathrm{m}\:\&\:\mathrm{n}\:\mathrm{can}\:\mathrm{be}\:\mathrm{determined} \\ $$ $$\mathrm{such}\:\mathrm{that}\:\mathrm{x}:\mathrm{y}=\mathrm{m}:\mathrm{n}\:\mathrm{or}\:\mathrm{n}:\mathrm{m}\varepsilon \\ $$ $$ \\ $$

Commented bymr W last updated on 03/Aug/20

yes sir, great solution!

$${yes}\:{sir},\:{great}\:{solution}! \\ $$

Answered by Rasheed.Sindhi last updated on 03/Aug/20

Let gcd(x,y)=k and      x=pk , y=qk  with gcd(p,q)=1  i-e p,q are coprime.   lcm(x,y)−gcd(x,y)=x+y   lcm(pk,qk)−gcd(pk,qk)=pk+qk       ⇒pqk−k=pk+qk       ⇒pq−1=p+q    ⇒p=2 , q=3   ∨  p=3 , q=2    ⇒x=2k ,y=3k  ∨ x=3k,y=2k  {x,y}={2k,3k}

$${Let}\:\mathrm{gcd}\left({x},{y}\right)={k}\:{and} \\ $$ $$\:\:\:\:{x}={pk}\:,\:{y}={qk}\:\:{with}\:\mathrm{gcd}\left({p},{q}\right)=\mathrm{1} \\ $$ $${i}-{e}\:{p},{q}\:{are}\:{coprime}. \\ $$ $$\:\mathrm{lcm}\left({x},{y}\right)−\mathrm{gcd}\left({x},{y}\right)={x}+{y} \\ $$ $$\:\mathrm{lcm}\left({pk},{qk}\right)−\mathrm{gcd}\left({pk},{qk}\right)={pk}+{qk} \\ $$ $$\:\:\:\:\:\Rightarrow{pqk}−{k}={pk}+{qk} \\ $$ $$\:\:\:\:\:\Rightarrow{pq}−\mathrm{1}={p}+{q} \\ $$ $$\:\:\Rightarrow{p}=\mathrm{2}\:,\:{q}=\mathrm{3}\:\:\:\vee\:\:{p}=\mathrm{3}\:,\:{q}=\mathrm{2} \\ $$ $$\:\:\Rightarrow{x}=\mathrm{2}{k}\:,{y}=\mathrm{3}{k}\:\:\vee\:{x}=\mathrm{3}{k},{y}=\mathrm{2}{k} \\ $$ $$\left\{{x},{y}\right\}=\left\{\mathrm{2}{k},\mathrm{3}{k}\right\} \\ $$

Commented byRasheed.Sindhi last updated on 03/Aug/20

All numbers which bear ratio  2:3(or 3:2) satisfy the given  condition.

$${All}\:{numbers}\:{which}\:{bear}\:{ratio} \\ $$ $$\mathrm{2}:\mathrm{3}\left({or}\:\mathrm{3}:\mathrm{2}\right)\:{satisfy}\:{the}\:{given} \\ $$ $${condition}. \\ $$

Commented byRasheed.Sindhi last updated on 03/Aug/20

Sir, no such condition. ∀ k∈N  See also my comment to mr W  sir.

$$\mathcal{S}{ir},\:{no}\:{such}\:{condition}.\:\forall\:{k}\in\mathbb{N} \\ $$ $${See}\:{also}\:{my}\:{comment}\:{to}\:{mr}\:{W} \\ $$ $${sir}. \\ $$

Commented byRasheed.Sindhi last updated on 03/Aug/20

Sir malwan. Not for k=0, because  it destroys ratio(2:3 or 3:2).In  addition the gcd(0,0) is not  defined.  See also my comment to mr W  sir.

$$\mathcal{S}{ir}\:{malwan}.\:{Not}\:{for}\:{k}=\mathrm{0},\:{because} \\ $$ $${it}\:{destroys}\:{ratio}\left(\mathrm{2}:\mathrm{3}\:{or}\:\mathrm{3}:\mathrm{2}\right).{In} \\ $$ $${addition}\:{the}\:{gcd}\left(\mathrm{0},\mathrm{0}\right)\:{is}\:{not} \\ $$ $${defined}. \\ $$ $${See}\:{also}\:{my}\:{comment}\:{to}\:{mr}\:{W} \\ $$ $${sir}. \\ $$

Commented byPRITHWISH SEN 2 last updated on 03/Aug/20

Nice sir

$$\mathrm{Nice}\:\mathrm{sir} \\ $$

Commented bymalwaan last updated on 03/Aug/20

Is it true for k = 0 ?

$${Is}\:{it}\:{true}\:{for}\:{k}\:=\:\mathrm{0}\:? \\ $$

Commented byPRITHWISH SEN 2 last updated on 03/Aug/20

Is there any certain condition that k should be  prime or it is true for all natural numbers ?

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{certain}\:\mathrm{condition}\:\mathrm{that}\:\mathrm{k}\:\mathrm{should}\:\mathrm{be} \\ $$ $$\mathrm{prime}\:\mathrm{or}\:\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:\mathrm{natural}\:\mathrm{numbers}\:? \\ $$

Commented bymalwaan last updated on 04/Aug/20

thank you so much sir

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com