Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 106033 by mohammad17 last updated on 02/Aug/20

Answered by mathmax by abdo last updated on 02/Aug/20

let I =∫ ((1−x^2 )/(x^2 (1+x^2 )))dx  let decompose F(x) =((1−x^2 )/(x^2 (1+x^2 ))) ⇒  F(x) =(1−x^2 ){(1/x^2 )−(1/(1+x^2 ))} =((1−x^2 )/x^2 )−((1−x^2 )/(1+x^2 ))  =(1/x^2 )−1  +((x^2 −1)/(x^2  +1)) =(1/x^2 )−1 +((x^2 +1−2)/(x^2  +1)) =(1/x^2 )−(2/(x^2  +1)) ⇒  I =∫((1/x^2 )−(2/(x^2  +1)))dx =−(1/x)−2arctan(x) +C

letI=1x2x2(1+x2)dxletdecomposeF(x)=1x2x2(1+x2)F(x)=(1x2){1x211+x2}=1x2x21x21+x2=1x21+x21x2+1=1x21+x2+12x2+1=1x22x2+1I=(1x22x2+1)dx=1x2arctan(x)+C

Answered by Dwaipayan Shikari last updated on 02/Aug/20

f(x)=cosx  f′(x)=−sinx  f′′(x)=−cosx  f′′′(x)=sinx  f^((iv)) (x)=cosx  f^((v)) (x)=−sinx  f^((vi)) (x)=−cosx  f^((vii)) (x)=sinx  ......  f(x)=f(0)+f′(0)x+((f′′(0))/(2!))x^2 +((f′′′(0))/(3!))x^3 +((f^((iv)) (0))/(4!))x^4 +(f^((v)) /(5!))x^5 +....  f(x)=1+0−(x^2 /(2!))+0+(x^4 /(4!))+...  cosx=1−(x^2 /(2!))+(x^4 /(4!))−(x^6 /(6!))+..

f(x)=cosxf(x)=sinxf(x)=cosxf(x)=sinxf(iv)(x)=cosxf(v)(x)=sinxf(vi)(x)=cosxf(vii)(x)=sinx......f(x)=f(0)+f(0)x+f(0)2!x2+f(0)3!x3+f(iv)(0)4!x4+f(v)5!x5+....f(x)=1+0x22!+0+x44!+...cosx=1x22!+x44!x66!+..

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 02/Aug/20

2)∫(dθ/(1+cosθ))  =2∫(dt/(1+((1−t^2 )/(1+t^2 )))).(1/(1+t^2 ))     (tan(θ/2)=t)  =2∫(dt/2)=t+C=tan(θ/2)+C    Another way  ∫(dθ/(1+cosθ))=∫(dθ/(2cos^2 (θ/2)))=(1/2)∫sec^2 (θ/2)dθ=tan(θ/2)+C

2)dθ1+cosθ=2dt1+1t21+t2.11+t2(tanθ2=t)=2dt2=t+C=tanθ2+CAnotherwaydθ1+cosθ=dθ2cos2θ2=12sec2θ2dθ=tanθ2+C

Commented by mohammad17 last updated on 02/Aug/20

thank you sir can you help me in number (4) in the intigral

thankyousircanyouhelpmeinnumber(4)intheintigral

Answered by Dwaipayan Shikari last updated on 02/Aug/20

3)∫log(1+x^2  )dx  I(a)=∫log(1+ax^2 )dx  I′(a)=∫(x^2 /(1+ax^2 ))dx  I′(a)=(1/a)∫((1+ax^2 )/(1+ax^2 ))−(1/(1+ax^2 ))dx  I′(a)=(1/a)∫1−(1/a^2 ) ∫(1/((1/a)+x^2 ))dx  I′(a)=(x/a)−(1/a^2 ).(√a) tan^(−1) ((√a)x)+C  I′(a)=(x/a)−a^(−(3/2)) tan^(−1) ((√a)x)+C  I(a)=∫(x/a)−a^((−3)/2) tan^(−1) ((√a)x)+C da  I(a)=x log(a)−a^(−(3/2)) tan^(−1) (u)da   {(√a)x=u , (x/(2(√a)))=(du/da)}  I(a)=xlog(a)−(1/x) ((2x)/(2a(√a)))∫tan^(−1) (u)da+Ca  I(a)=xlog(a)−(2/x)∫(1/a)tan^(−1) (u)du+Ca  I(a)=xlog(a)−(2/x^3 )∫u^2 tan^(−1) u du+Ca  I(a)=xlog(a)−(2/x^3 ) tan^(−1) u.(u^3 /3)+(1/3)∫(u^3 /(1+u^2 ))+Ca  I(a)=xlog(a)−(u^3 /3) .(2/x^3 ) tan^(−1) ((√a)x)+(1/3)∫((u^3 +u)/(1+u^2 ))−(u/(1+u^2 ))+Ca  I(a)=xlog(a)−((2u^3 )/(3x^3 )).tan^(−1) ((√a)x)+(1/6)u^2 −(1/6)log(1+u^2 )+Ca  I(a)=xlog(a)−((2 a^(3/2) x^3 )/(3x^3 )) tan^(−1) ((√a)x)+(1/6)ax^2 −(1/6)log(1+ax^2 )+Ca  I(1)=−(2/3)tan^(−1) (x)+(1/6)x^2 −(1/6)log(1+x^2 )+C  another way  ∫log(1+x^2 )=xlog(1+x^2 )−∫((2x^2 )/(1+x^2 ))  =xlog(1+x^2 )−2x+2tan^(−1) x+C

3)log(1+x2)dxI(a)=log(1+ax2)dxI(a)=x21+ax2dxI(a)=1a1+ax21+ax211+ax2dxI(a)=1a11a211a+x2dxI(a)=xa1a2.atan1(ax)+CI(a)=xaa32tan1(ax)+CI(a)=xaa32tan1(ax)+CdaI(a)=xlog(a)a32tan1(u)da{ax=u,x2a=duda}I(a)=xlog(a)1x2x2aatan1(u)da+CaI(a)=xlog(a)2x1atan1(u)du+CaI(a)=xlog(a)2x3u2tan1udu+CaI(a)=xlog(a)2x3tan1u.u33+13u31+u2+CaI(a)=xlog(a)u33.2x3tan1(ax)+13u3+u1+u2u1+u2+CaI(a)=xlog(a)2u33x3.tan1(ax)+16u216log(1+u2)+CaI(a)=xlog(a)2a32x33x3tan1(ax)+16ax216log(1+ax2)+CaI(1)=23tan1(x)+16x216log(1+x2)+Canotherwaylog(1+x2)=xlog(1+x2)2x21+x2=xlog(1+x2)2x+2tan1x+C

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 02/Aug/20

4)∫((1−x^2 )/(x^2 (1+x^2 )))dx  ∫(1/(x^2 (1+x^2 )))−(1/(1+x^2 ))  =∫(1/x^2 )−(1/(1+x^2 ))−tan^(−1) x  =−(1/x)−2tan^(−1) x+C

4)1x2x2(1+x2)dx1x2(1+x2)11+x2=1x211+x2tan1x=1x2tan1x+C

Answered by bemath last updated on 02/Aug/20

(4)∫ (((1−x^2 ))/(x^2 (1+x^2 ))) dx = ∫(((1+x^2 )−2x^2 )/(x^2 (1+x^2 )))dx   = ∫ (dx/x^2 ) −2∫(dx/(1+x^2 ))  = −(1/x)−2tan^(−1)  (x)+c

(4)(1x2)x2(1+x2)dx=(1+x2)2x2x2(1+x2)dx=dxx22dx1+x2=1x2tan1(x)+c

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 02/Aug/20

q_1 )    nature of Σ_(n=1) ^∞ (1−((2a)/n))^n   we have (1−((2a)/n))^n  =e^(nln(1−((2a)/n)))   ln^′ (1−u) =((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (u^n /n) ⇒ln(1−u) =−u−(u^2 /2) +o(u^3 ) ⇒  ln(1−((2a)/n)) =−((2a)/n)−((4a^2 )/n^2 ) +o((1/n^3 )) ⇒nln(1−((2a)/n))=−2a−((4a^2 )/n)+o((1/n^2 )) ⇒  e^(nln(1−((2a)/n)))  =e^(−2a−((4a^2 )/n)+o((1/n^2 )))  ∼e^(−2a)  e^(−((4a^2 )/n))  ∼e^(−2a) {1−((4a^2 )/n)}  Σ ((4a^2 )/n) diverges  if a≠0 ⇒Σ u_n  diverges  Σ u_n  diverges if a=0

q1)natureofn=1(12an)nwehave(12an)n=enln(12an)ln(1u)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnln(1u)=uu22+o(u3)ln(12an)=2an4a2n2+o(1n3)nln(12an)=2a4a2n+o(1n2)enln(12an)=e2a4a2n+o(1n2)e2ae4a2ne2a{14a2n}Σ4a2ndivergesifa0ΣundivergesΣundivergesifa=0

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Commented by abdomathmax last updated on 02/Aug/20

you are welcome

youarewelcome

Answered by bemath last updated on 02/Aug/20

Q3. (2) ∫ (dθ/(1+cos θ)) = ∫((1−cos θ)/(sin^2 θ))dθ  = ∫ (csc^2 θ−cot θcsc θ)dθ  = −cot θ + csc θ + c

Q3.(2)dθ1+cosθ=1cosθsin2θdθ=(csc2θcotθcscθ)dθ=cotθ+cscθ+c

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 02/Aug/20

nature of  Σ_(n=1) ^∞ (1+n)^(1/(lnn))    let u_n =(1+n)^(1/(lnn))   ⇒u_n =e^((1/(ln(n)))ln(1+n))  =e^((ln(n)+ln(1+(1/n)))/(lnn))  =e^(1 +((ln(1+(1/n)))/(ln(n))))   ∼e ×e^(1/(nln(n)))  ⇒lim_(n→+∞) u_n =e ⇒Σ u_n  diverges

natureofn=1(1+n)1lnnletun=(1+n)1lnnun=e1ln(n)ln(1+n)=eln(n)+ln(1+1n)lnn=e1+ln(1+1n)ln(n)e×e1nln(n)limn+un=eΣundiverges

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 02/Aug/20

f(x) =cosx ⇒f(x) =Σ_(n=o) ^∞  ((f^((n)) (0))/(n!)) x^n   but f^((n)) (x) =cos(x+((nπ)/2)) ⇒  f^((n)) (n) =cos(((nπ)/2))   n=2p ⇒f^((n)) (x) =(−1)^p   n=2p+1 ⇒f^((n)) (x) =cos((((2p+1)π)/2)) =cos(pπ +(π/2))=0 ⇒  f(x) =Σ_(n=0) ^∞  (((−1)^n  x^(2n) )/((2n)!)) =1−(x^2 /(2!)) +(x^4 /(4!)) +...

f(x)=cosxf(x)=n=of(n)(0)n!xnbutf(n)(x)=cos(x+nπ2)f(n)(n)=cos(nπ2)n=2pf(n)(x)=(1)pn=2p+1f(n)(x)=cos((2p+1)π2)=cos(pπ+π2)=0f(x)=n=0(1)nx2n(2n)!=1x22!+x44!+...

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 02/Aug/20

S = Σ_(n=1) ^∞  (((−1)^n (x−4)^n )/((n+1)^2 ))  let U_n =(((−1)^n (x−4)^n )/((n+1)^2 )) we have  ∣(U_(n+1) /U_n )∣ =∣(((−1)^(n+1) (x−4)^(n+1) )/((n+2)^2 ))×(((n+1)^2 )/((−1)^n (x−4)^n ))∣  =(((n+1)/(n+2)))^2 ∣x−4∣ →∣x−4∣  (n→∞) so  if ∣x−4∣<1  the serie converge  (−1<x−4<1 ⇒3<x<5)  if ∣x−4∣>1 the serie diverges  x=4 ⇒S=0

S=n=1(1)n(x4)n(n+1)2letUn=(1)n(x4)n(n+1)2wehaveUn+1Un=∣(1)n+1(x4)n+1(n+2)2×(n+1)2(1)n(x4)n=(n+1n+2)2x4→∣x4(n)soifx4∣<1theserieconverge(1<x4<13<x<5)ifx4∣>1theseriedivergesx=4S=0

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 02/Aug/20

convergence of  Σ_(n=1) ^∞  (((2n+1)(x−2)^n )/n^3 )  let v_n =(((2n+1)(x−2)^n )/n^3 )  we have ∣(v_(n+1) /v_n )∣ =∣(((2n+3)(x−2)^(n+1) )/((n+1)^3 ))×(n^3 /((2n+1)(x−2)^n ))∣  =((n/(n+1)))^3 ((2n+3)/(2n+1)) ×∣x−2∣ →∣x−2∣ so  if ∣x−2∣<1 ⇒Σ v_n converge(−1<x−2<1 ⇒1<x<3 ⇒D_c =]1,3[)  if ∣x−2∣>1  ⇒Σ v_n  diverges  x=2 ⇒Σ v_n =0

convergenceofn=1(2n+1)(x2)nn3letvn=(2n+1)(x2)nn3wehavevn+1vn=∣(2n+3)(x2)n+1(n+1)3×n3(2n+1)(x2)n=(nn+1)32n+32n+1×x2→∣x2soifx2∣<1Σvnconverge(1<x2<11<x<3Dc=]1,3[)ifx2∣>1Σvndivergesx=2Σvn=0

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 02/Aug/20

∫ (dθ/(1+cosθ)) =_(tan((θ/2))=t)    ∫  ((2dt)/((1+t^2 )(1+((1−t^2 )/(1+t^2 ))))) =∫ ((2dt)/(1+t^2  +1−t^2 ))  =∫ dt =tan((θ/2))+C  ∫ ln(1+x^2 )dx =_(by parts)    xln(1+x^2 )−∫ x.((2x)/(1+x^2 ))dx  =xln(1+x^2 )−2 ∫((x^2 +1−1)/(1+x^2 ))dx  =xln(1+x^2 )−2x+2arctanx+ C

dθ1+cosθ=tan(θ2)=t2dt(1+t2)(1+1t21+t2)=2dt1+t2+1t2=dt=tan(θ2)+Cln(1+x2)dx=bypartsxln(1+x2)x.2x1+x2dx=xln(1+x2)2x2+111+x2dx=xln(1+x2)2x+2arctanx+C

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 02/Aug/20

A =∫ ((cotan(lnx))/x)dx  let lnx =t ⇒ A =∫((cotan(t))/e^t ) e^t  dt  =∫  ((cost)/(sint))dt =ln∣sin(t)∣ +C =ln∣sin(lnx)∣ +C

A=cotan(lnx)xdxletlnx=tA=cotan(t)etetdt=costsintdt=lnsin(t)+C=lnsin(lnx)+C

Answered by mathmax by abdo last updated on 02/Aug/20

q_5 )   for n≥1   (1/(n^2 (√n))) ≤(1/n^2 )  but Σ(1/n^2 ) converges ⇒Σu_n converges  we have  ∀n≥1    ((sin^2 (n))/2^n ) ≤(1/2^n ) and Σ(1/2^n ) converges ⇒Σu_n convergs  for x≥2 the function ϕ(x) =(1/(x(√(lnx)))) is decreazing ⇒  Σ_(n=2) ^∞  (1/(n(√(lnn)))) and ∫_2 ^∞  (dx/(x(√(lnx)))) have tbe same nature  changement (√(lnx))=t give lnx =t^2  ⇒x =e^(t^2  )  ⇒  ∫_2 ^∞  (dx/(x(√(lnx)))) =∫_(√(ln2)) ^(+∞)  ((2t e^t^2  )/(e^t^2   t)) dt = ∫_(√(ln2)) ^(+∞)  2dt =+∞ ⇒this serie diverges..

q5)forn11n2n1n2butΣ1n2convergesΣunconvergeswehaven1sin2(n)2n12nandΣ12nconvergesΣunconvergsforx2thefunctionφ(x)=1xlnxisdecreazingn=21nlnnand2dxxlnxhavetbesamenaturechangementlnx=tgivelnx=t2x=et22dxxlnx=ln2+2tet2et2tdt=ln2+2dt=+thisseriediverges..

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Commented by abdomathmax last updated on 02/Aug/20

you are welcome sir

youarewelcomesir

Answered by mathmax by abdo last updated on 02/Aug/20

Σ_(n=5) ^∞  ((e/n))^(n−1) =Σ_(n=4) ^∞  ((e/(n+1)))^n  let v_n =((e/(n+1)))^n   we see v_n >0 ⇒  ⇒(v_(n+1) /v_n ) =(e^(n+1) /((n+2)^(n+1) ))×(((n+1)^n )/e^n ) =e ×(((n+1)^n )/((n+2)^n (n+2)))  =(e/(n+2))(((n+1)/(n+2)))^n  =(e/(n+2))(((n+2−1)/(n+2)))^n  =(e/(n+2))(1−(1/(n+2)))^n   =(e/(n+2))e^(nln(1−(1/(n+2))) )  ∼(e/(n+2)) e^(−(n/(n+2)))  ⇒0 ⇒Σ v_n  converges

n=5(en)n1=n=4(en+1)nletvn=(en+1)nweseevn>0vn+1vn=en+1(n+2)n+1×(n+1)nen=e×(n+1)n(n+2)n(n+2)=en+2(n+1n+2)n=en+2(n+21n+2)n=en+2(11n+2)n=en+2enln(11n+2)en+2enn+20Σvnconverges

Commented by mohammad17 last updated on 02/Aug/20

thank you sir

thankyousir

Commented by abdomathmax last updated on 02/Aug/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com