Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 106120 by Her_Majesty last updated on 02/Aug/20

question 106075 again  ∫((1+cosx)/((99cosx−70sinx+210)cosx−66sinx+110))dx=?  using t=tan(x/2) I get  −4∫(dt/(t^4 +8t^3 −22t^2 +272t−419))  can someone factorize the denominator?

question106075again1+cosx(99cosx70sinx+210)cosx66sinx+110dx=?usingt=tan(x/2)Iget4dtt4+8t322t2+272t419cansomeonefactorizethedenominator?

Commented by Sarah85 last updated on 03/Aug/20

typo: t^4 −8t^3 −22t^2 +272t−419  in this case  t= { ((2−(√3)−(√5)−(√(15)))),((2+(√3)+(√5)−(√(15)))),((2+(√3)−(√5)+(√(15)))),((2−(√3)+(√5)+(√(15)))) :}

typo:t48t322t2+272t419inthiscaset={235152+3+5152+35+1523+5+15

Commented by Her_Majesty last updated on 03/Aug/20

thanks but how you got it?

thanksbuthowyougotit?

Commented by 1549442205PVT last updated on 03/Aug/20

t^4 −8t^3 −22t^2 +272t−419=0  ⇔[t^2 −(4−2(√(15)))t+11−6(√(15)) ]×  [t^2 −(4+2(√(15)))t+11+6(√(15))]=0  ⇔[t^2 −(4−2(√5))t−(9+10(√5))]×  [t^2 −(4+2(√5))t−(9−10(√5))]=0

t48t322t2+272t419=0[t2(4215)t+11615]×[t2(4+215)t+11+615]=0[t2(425)t(9+105)]×[t2(4+25)t(9105)]=0

Answered by 1549442205PVT last updated on 03/Aug/20

t^4 +8t^3 −22t^2 +272t−419  =(t^2 +10.374065851t−19.19728528)×  (t^2 −2.374065851+21.82600076)  two real roots be  x_1 =1.602856312,x_2 =−11.97692216

t4+8t322t2+272t419=(t2+10.374065851t19.19728528)×(t22.374065851+21.82600076)tworealrootsbex1=1.602856312,x2=11.97692216

Terms of Service

Privacy Policy

Contact: info@tinkutara.com