Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 106125 by Ar Brandon last updated on 02/Aug/20

∫_(π/4) ^π (√(1−sin2x)) dx

π4π1sin2xdx

Answered by Dwaipayan Shikari last updated on 02/Aug/20

∫_(π/4) ^π sinx−cosx dx     or∫_(π/4) ^π cosx−sinx  −[(sinx+cosx)]_(π/4) ^π =1+(√2)  or∫_(π/4) ^π cosx−sinx=  [sinx+cosx]_(π/4) ^π =−(1+(√2))

π4πsinxcosxdxorπ4πcosxsinx[(sinx+cosx)]π4π=1+2orπ4πcosxsinx=[sinx+cosx]π4π=(1+2)

Commented by Ar Brandon last updated on 02/Aug/20

OK. Below is my view point. I′ll like to have your  opinion.

OK.Belowismyviewpoint.Illliketohaveyouropinion.

Answered by Ar Brandon last updated on 02/Aug/20

f(x)=(√(1−sin2x))=(√((cosx−sinx)^2 ))           =∣cosx−sinx∣=(√2)∣cos(x+(π/4))∣  f(x)= { (((√2)cos(x+(π/4))   for −(3/4)≤x≤(π/4))),((−(√2)cos(x+(π/4)) for (π/4)<x<((5π)/4))) :}  ⇒∫_(π/4) ^π f(x)dx=−(√2)∫_(π/4) ^π cos(x+(π/4))dx                             =−(√2)[sin(x+(π/4))]_(π/4) ^π =−(√2)(−(1/(√2))−1)                             =(√2)+1

f(x)=1sin2x=(cosxsinx)2=∣cosxsinx∣=2cos(x+π4)f(x)={2cos(x+π4)for34xπ42cos(x+π4)forπ4<x<5π4π4πf(x)dx=2π4πcos(x+π4)dx=2[sin(x+π4)]π4π=2(121)=2+1

Commented by 1549442205PVT last updated on 03/Aug/20

By the hypothesis the interval to take  integration be [(π/4);π],so (π/2)≤(π/4)+x≤((5π)/4)  ⇒cos((π/4)+x)<0

Bythehypothesistheintervaltotakeintegrationbe[π4;π],soπ2π4+x5π4cos(π4+x)<0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com