All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 106173 by john santu last updated on 03/Aug/20
limx→π/2(1−sinxx2cot2x)?
Answered by bemath last updated on 03/Aug/20
setx=π2+♭→4π2×lim♭→01−sin(π2+♭)cot2(π2+♭)=4π2×lim♭→01−cos♭tan2♭=4π2×lim♭→02sin2(♭2)tan2♭=8π2×[lim♭→0sin(♭2)tan♭]2=8π2×14=2π2★
Answered by mathmax by abdo last updated on 03/Aug/20
letg(x)=1−sinxx2cotan2x⇒g(x)=sin2x(1−sinx)x2cos2xchangementx=π2−tgiveg(x)=h(t)=cos2t(1−cost)(π2−t)2sin2t(x→π2⇒t→0)⇒h(t)∼(1−t22)2.t22(π2−t)2t2=12(1−t22π2−t)2⇒limt→0h(t)=12(4π2)=2π2=limx→π2g(x)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com