Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 106188 by mr W last updated on 03/Aug/20

Solve for x  x^x^(...x^a )  =a with a∈R^+

Solveforxxx...xa=awithaR+

Answered by Dwaipayan Shikari last updated on 03/Aug/20

X^(X....X^a ) =a  X^X^X^X^(X......)    =a  X^a =a  (e^(−logx) )^a =(1/a)  −alogx e^(−alogx) =−logx  −alogx=W_0 (−logx)  a=((−W_0 (−logx))/(logx))

XX....Xa=aXXXXX......=aXa=a(elogx)a=1aalogxealogx=logxalogx=W0(logx)a=W0(logx)logx

Commented by mr W last updated on 03/Aug/20

we should solve for x, not for a.    please compare following cases:  x^x^(1/2)  =(1/2)  x^x^x^(1/2)   =(1/2)

weshouldsolveforx,notfora.pleasecomparefollowingcases:xx12=12xxx12=12

Commented by Dwaipayan Shikari last updated on 03/Aug/20

X^X^(X..A)  =A  X^(X..A) =A  X^X^X^X^(X.....)    =A  X^A =A  X=(A)^(1/A)   I think that two following cases are same

XXX..A=AXX..A=AXXXXX.....=AXA=AX=AAIthinkthattwofollowingcasesaresame

Answered by mr W last updated on 03/Aug/20

we see the root of x^a =a is also a root  of the original equation.  from x^a =a we get x=a^(1/a) , i.e. the  original equation has at least a root  x=a^(1/a) .    but does the original equation have  more than this root?  case 1: x^x^(...x^a )  =a with odd number of  x in the equation.  we see the original equation is  equivalent to x^a =a, that means the  root x=a^(1/a)  is the only one root of  the original equation.    case 2: x^x^(...x^a )  =a with even number of  x in the equation.  we see the original equation is  equivalent to x^x^a  =a. we can solve it  as following:  x^a ln x=ln a  x^a ln x^a =aln a  (ln x^a )e^((ln x^a )) =aln a  ⇒ln x^a =W(aln a)  ⇒x=[e^(W(aln a)) ]^(1/a) =[((aln a)/(W(aln a)))]^(1/a)   for a=1 ⇒we see x=1  for a>1 ⇒ aln a>0 ⇒we get one root  for a<1 ⇒ −(1/e)≤aln a<0 ⇒we get  two roots (if a≠(1/e))or one root (if a=(1/e)).

weseetherootofxa=aisalsoarootoftheoriginalequation.fromxa=awegetx=a1a,i.e.theoriginalequationhasatleastarootx=a1a.butdoestheoriginalequationhavemorethanthisroot?case1:xx...xa=awithoddnumberofxintheequation.weseetheoriginalequationisequivalenttoxa=a,thatmeanstherootx=a1aistheonlyonerootoftheoriginalequation.case2:xx...xa=awithevennumberofxintheequation.weseetheoriginalequationisequivalenttoxxa=a.wecansolveitasfollowing:xalnx=lnaxalnxa=alna(lnxa)e(lnxa)=alnalnxa=W(alna)x=[eW(alna)]1a=[alnaW(alna)]1afora=1weseex=1fora>1alna>0wegetonerootfora<11ealna<0wegettworoots(ifa1e)oroneroot(ifa=1e).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com