Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 106220 by bemath last updated on 03/Aug/20

find general solution cos (x−45°)=sin (2x+60°)

findgeneralsolutioncos(x45°)=sin(2x+60°)

Answered by Dwaipayan Shikari last updated on 03/Aug/20

sin((π/2)−x+(π/4))=sin(2x+(π/3))  ((3π)/4)−x=2kπ±2x+(π/3)    (k∈Z)  first case  3x+2kπ=((5π)/(12))  second case  x=2kπ+((13π)/(12))

sin(π2x+π4)=sin(2x+π3)3π4x=2kπ±2x+π3(kZ)firstcase3x+2kπ=5π12secondcasex=2kπ+13π12

Answered by john santu last updated on 03/Aug/20

Answered by malwaan last updated on 03/Aug/20

cos(x−(π/4))=sin(2x+(π/3))  sin((π/2)−x+(π/4))=sin(2x+(π/3))  sin(((3π)/4)−x)=sin(2x+(π/3))  ((3𝛑)/4)−x=2x+(𝛑/3) +2k𝛑  ⇒−3x=((−6𝛑)/(12))+2k𝛑  ⇒x= (𝛑/6) −((2𝛑k)/3)  or  ((3𝛑)/4)−x=𝛑−(2x+(𝛑/3))+2k𝛑  ⇒x= 2k𝛑−(𝛑/(12))

cos(xπ4)=sin(2x+π3)sin(π2x+π4)=sin(2x+π3)sin(3π4x)=sin(2x+π3)3π4x=2x+π3+2kπ3x=6π12+2kπx=π62πk3or3π4x=π(2x+π3)+2kπx=2kππ12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com