Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 106246 by mohammad17 last updated on 03/Aug/20

Commented by mohammad17 last updated on 03/Aug/20

test the series converge or diverge

$${test}\:{the}\:{series}\:{converge}\:{or}\:{diverge} \\ $$

Commented by mathmax by abdo last updated on 04/Aug/20

9) S =Σ_(n=1) ^∞  (−1)^n  u_n  with u_n =(((n+5)^2 )/((n+3)^5 )) =ϕ(n) with  ϕ(x) =(((x+5)^2 )/((x+3)^5 )) ( we take x>0) ⇒  ϕ^′ (x) =((2(x+5)(x+3)^5 −5(x+3)^4 (x+5)^2 )/((x+3)^(10) ))  =((2(x+5)(x+3)−5(x+5)^2 )/((x+3)^6 )) =((2x^2 +6x +10x+30−5(x^2 +10x+25))/((x+3)^6 ))  =((2x^2  +16x +30−5x^2 −50x −125)/((x+3)^6 ))  =((−3x^2 −34x−125)/((x+3)^2 ))<0 ⇒ϕ is decreazing ⇒S is alternate serie  convergent  .

$$\left.\mathrm{9}\right)\:\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{u}_{\mathrm{n}} \:\mathrm{with}\:\mathrm{u}_{\mathrm{n}} =\frac{\left(\mathrm{n}+\mathrm{5}\right)^{\mathrm{2}} }{\left(\mathrm{n}+\mathrm{3}\right)^{\mathrm{5}} }\:=\varphi\left(\mathrm{n}\right)\:\mathrm{with} \\ $$$$\varphi\left(\mathrm{x}\right)\:=\frac{\left(\mathrm{x}+\mathrm{5}\right)^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{5}} }\:\left(\:\mathrm{we}\:\mathrm{take}\:\mathrm{x}>\mathrm{0}\right)\:\Rightarrow \\ $$$$\varphi^{'} \left(\mathrm{x}\right)\:=\frac{\mathrm{2}\left(\mathrm{x}+\mathrm{5}\right)\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{5}} −\mathrm{5}\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{4}} \left(\mathrm{x}+\mathrm{5}\right)^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{10}} } \\ $$$$=\frac{\mathrm{2}\left(\mathrm{x}+\mathrm{5}\right)\left(\mathrm{x}+\mathrm{3}\right)−\mathrm{5}\left(\mathrm{x}+\mathrm{5}\right)^{\mathrm{2}} }{\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{6}} }\:=\frac{\mathrm{2x}^{\mathrm{2}} +\mathrm{6x}\:+\mathrm{10x}+\mathrm{30}−\mathrm{5}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{10x}+\mathrm{25}\right)}{\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{6}} } \\ $$$$=\frac{\mathrm{2x}^{\mathrm{2}} \:+\mathrm{16x}\:+\mathrm{30}−\mathrm{5x}^{\mathrm{2}} −\mathrm{50x}\:−\mathrm{125}}{\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{6}} } \\ $$$$=\frac{−\mathrm{3x}^{\mathrm{2}} −\mathrm{34x}−\mathrm{125}}{\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} }<\mathrm{0}\:\Rightarrow\varphi\:\mathrm{is}\:\mathrm{decreazing}\:\Rightarrow\mathrm{S}\:\mathrm{is}\:\mathrm{alternate}\:\mathrm{serie} \\ $$$$\mathrm{convergent}\:\:. \\ $$$$ \\ $$

Commented by mohammad17 last updated on 04/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by mathmax by abdo last updated on 03/Aug/20

3) S =Σ_(n=1) ^∞  (((−1)^n )/(n+2^n ))   for all n≥1   n+2^n  >2^(n )  ⇒(1/(n+2^n ))<(1/2^n ) ⇒  ∣(((−1)^n )/(n+2^n ))∣<(1/2^n )  and the serie Σ (1/2^n ) converges ⇒ S converves

$$\left.\mathrm{3}\right)\:\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}+\mathrm{2}^{\mathrm{n}} }\:\:\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\geqslant\mathrm{1}\:\:\:\mathrm{n}+\mathrm{2}^{\mathrm{n}} \:>\mathrm{2}^{\mathrm{n}\:} \:\Rightarrow\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}^{\mathrm{n}} }<\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\Rightarrow \\ $$$$\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}+\mathrm{2}^{\mathrm{n}} }\mid<\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\:\mathrm{and}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\mathrm{converges}\:\Rightarrow\:\mathrm{S}\:\mathrm{converves} \\ $$

Commented by mohammad17 last updated on 04/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 04/Aug/20

you are welcome sir

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir} \\ $$

Answered by mathmax by abdo last updated on 03/Aug/20

5) S =Σ_(n=2) ^∞  (((−1)^(n−1) )/((nln(n))^2 )) ⇒ S =Σ_(n=2) ^∞  (−1)^(n−1)  u_n   u_n =(1/((nln(n))^2 ))  u_n is >0   decrezing to 0 ⇒ S is a alternate serie  convergente  another way  ∣(((−1)^(n−1) )/((nlnn)^2 ))∣≤(1/((nlnn)^2 ))  the sdquence u_n =(1/((nlnn)^2 ))  is decreazing ⇒Σ_(n=2) ^∞  (1/((nlnn)^2 )) and ∫_2 ^(+∞)  (dx/((xlnx)^2 )) have same  nature of convergence  we have  ∫_2 ^(+∞)  (dx/((xlnx)^2 )) =_(lnx=t)     ∫_(ln2) ^(+∞)  ((e^t dt)/((e^t t)^2 )) =∫_(ln2) ^(+∞)  (e^(−t) /t^2 ) dt  and this integral is  convergent ⇒ S is convergent

$$\left.\mathrm{5}\right)\:\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{nln}\left(\mathrm{n}\right)\right)^{\mathrm{2}} }\:\Rightarrow\:\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \:\mathrm{u}_{\mathrm{n}} \\ $$$$\mathrm{u}_{\mathrm{n}} =\frac{\mathrm{1}}{\left(\mathrm{nln}\left(\mathrm{n}\right)\right)^{\mathrm{2}} }\:\:\mathrm{u}_{\mathrm{n}} \mathrm{is}\:>\mathrm{0}\:\:\:\mathrm{decrezing}\:\mathrm{to}\:\mathrm{0}\:\Rightarrow\:\mathrm{S}\:\mathrm{is}\:\mathrm{a}\:\mathrm{alternate}\:\mathrm{serie} \\ $$$$\mathrm{convergente} \\ $$$$\mathrm{another}\:\mathrm{way}\:\:\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{nlnn}\right)^{\mathrm{2}} }\mid\leqslant\frac{\mathrm{1}}{\left(\mathrm{nlnn}\right)^{\mathrm{2}} }\:\:\mathrm{the}\:\mathrm{sdquence}\:\mathrm{u}_{\mathrm{n}} =\frac{\mathrm{1}}{\left(\mathrm{nlnn}\right)^{\mathrm{2}} } \\ $$$$\mathrm{is}\:\mathrm{decreazing}\:\Rightarrow\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{nlnn}\right)^{\mathrm{2}} }\:\mathrm{and}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{xlnx}\right)^{\mathrm{2}} }\:\mathrm{have}\:\mathrm{same} \\ $$$$\mathrm{nature}\:\mathrm{of}\:\mathrm{convergence}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{xlnx}\right)^{\mathrm{2}} }\:=_{\mathrm{lnx}=\mathrm{t}} \:\:\:\:\int_{\mathrm{ln2}} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{t}} \mathrm{dt}}{\left(\mathrm{e}^{\mathrm{t}} \mathrm{t}\right)^{\mathrm{2}} }\:=\int_{\mathrm{ln2}} ^{+\infty} \:\frac{\mathrm{e}^{−\mathrm{t}} }{\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt}\:\:\mathrm{and}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is} \\ $$$$\mathrm{convergent}\:\Rightarrow\:\mathrm{S}\:\mathrm{is}\:\mathrm{convergent} \\ $$

Commented by mohammad17 last updated on 04/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 04/Aug/20

you are welcome sir

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir} \\ $$

Answered by mathmax by abdo last updated on 04/Aug/20

7) S =Σ_(n=1) ^(∞  )  ((sin(αn))/(n!)) ⇒ S =Σ_(n=1) ^∞  u_n   ∣(u_(n+1) /u_n )∣ =∣((sin(α(n+1)))/((n+1)!))×((n!)/(sin(αn)))∣ =∣((sin(αn+n))/(sin(αn)))∣×(1/(n+1)) →0(n→+∞)  S is convervent   another way  we have ∣((sin(αn))/(n!))∣≤(1/(n!))  ∀n  and Σ(1/(n!)) converges ⇒  S converges absolument ⇒S conerges..

$$\left.\mathrm{7}\right)\:\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty\:\:} \:\frac{\mathrm{sin}\left(\alpha\mathrm{n}\right)}{\mathrm{n}!}\:\Rightarrow\:\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{u}_{\mathrm{n}} \\ $$$$\mid\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} }\mid\:=\mid\frac{\mathrm{sin}\left(\alpha\left(\mathrm{n}+\mathrm{1}\right)\right)}{\left(\mathrm{n}+\mathrm{1}\right)!}×\frac{\mathrm{n}!}{\mathrm{sin}\left(\alpha\mathrm{n}\right)}\mid\:=\mid\frac{\mathrm{sin}\left(\alpha\mathrm{n}+\mathrm{n}\right)}{\mathrm{sin}\left(\alpha\mathrm{n}\right)}\mid×\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:\rightarrow\mathrm{0}\left(\mathrm{n}\rightarrow+\infty\right) \\ $$$$\mathrm{S}\:\mathrm{is}\:\mathrm{convervent}\: \\ $$$$\mathrm{another}\:\mathrm{way}\:\:\mathrm{we}\:\mathrm{have}\:\mid\frac{\mathrm{sin}\left(\alpha\mathrm{n}\right)}{\mathrm{n}!}\mid\leqslant\frac{\mathrm{1}}{\mathrm{n}!}\:\:\forall\mathrm{n}\:\:\mathrm{and}\:\Sigma\frac{\mathrm{1}}{\mathrm{n}!}\:\mathrm{converges}\:\Rightarrow \\ $$$$\mathrm{S}\:\mathrm{converges}\:\mathrm{absolument}\:\Rightarrow\mathrm{S}\:\mathrm{conerges}.. \\ $$

Commented by mohammad17 last updated on 04/Aug/20

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com