Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 106285 by bemath last updated on 04/Aug/20

∫_0 ^∞ e^(−x^2 )  dx ?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:? \\ $$

Answered by bobhans last updated on 04/Aug/20

recall ∫_(−∞) ^∞ e^(−x^2 )  dx = (√π)  ⇔ ∫_(−∞) ^0 e^(−x^2 ) dx + ∫_0 ^∞ e^(−x^2 )  dx = (√π)   we know that f(x)= e^(−x^2 )  is even function  so ∫_(−∞) ^0 e^(−x^2 )  dx = ∫_0 ^∞ e^(−x^2 )  dx  finally we get ⇒2∫_0 ^∞ e^(−x^2 )  dx = (√π)  ∴ ∫_0 ^∞ e^(−x^2 )  dx = ((√π)/2). ★

$$\mathrm{recall}\:\underset{−\infty} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:=\:\sqrt{\pi} \\ $$$$\Leftrightarrow\:\int_{−\infty} ^{\mathrm{0}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:+\:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:=\:\sqrt{\pi}\: \\ $$$$\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{is}\:\mathrm{even}\:\mathrm{function} \\ $$$$\mathrm{so}\:\underset{−\infty} {\overset{\mathrm{0}} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:=\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx} \\ $$$$\mathrm{finally}\:\mathrm{we}\:\mathrm{get}\:\Rightarrow\mathrm{2}\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:=\:\sqrt{\pi} \\ $$$$\therefore\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}}.\:\bigstar\: \\ $$

Answered by MAB last updated on 04/Aug/20

I=∫_0 ^∞ e^(−x^2 )  dx   I^2 =(∫_0 ^∞ e^(−x^2 ) dx)(∫_0 ^∞ e^(−y^2 ) dy)  I^2 =∫_0 ^∞ ∫_0 ^∞ e^(−(x^2 +y^2 )) dxdy  let x=rcos(θ) and y=rsin(θ)  where r≥0 and 0≤θ≤π/2  dxdy=rdrdθ  I^2 =∫_0 ^(π/2) ∫_0 ^∞ re^(−r^2 ) drdθ  I^2 =∫_0 ^(π/2) (1/2)[e^(−r^2 ) ]_0 ^∞ dθ  I^2 =(π/4)  hence I=((√π)/2)

$${I}=\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\: \\ $$$${I}^{\mathrm{2}} =\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}\right)\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{y}^{\mathrm{2}} } {dy}\right) \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$${let}\:{x}={rcos}\left(\theta\right)\:{and}\:{y}={rsin}\left(\theta\right) \\ $$$${where}\:{r}\geqslant\mathrm{0}\:{and}\:\mathrm{0}\leqslant\theta\leqslant\pi/\mathrm{2} \\ $$$${dxdy}={rdrd}\theta \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\infty} {re}^{−{r}^{\mathrm{2}} } {drd}\theta \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}\left[{e}^{−{r}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\infty} {d}\theta \\ $$$${I}^{\mathrm{2}} =\frac{\pi}{\mathrm{4}} \\ $$$${hence}\:{I}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com