Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 106366 by 175mohamed last updated on 04/Aug/20

Answered by mathmax by abdo last updated on 05/Aug/20

cosx =1−(x^2 /2) +(x^4 /(4!)) +... ⇒1−(x^2 /2)≤cosx ≤1 ⇒  1−(1/2)((1/2^k ))≤cos((1/2^k ))≤1 ⇒Σ_(k=1) ^2^n  (1−(1/2^(k+1) ))≤Σ_(k=1) ^2^n  cos((1/2^k ))≤2^n  ⇒  2^n −Σ_(k=1) ^2^n   (1/2^(k+1) ) ≤Σ_(k=1) ^2^n   cos((1/2^k )) ≤2^n   but  Σ_(k=1) ^2^n   (1/2^(k+1) ) =Σ_(k=2) ^(2^n +1)  (1/2^k ) =Σ_(k=0) ^(2^n +1)  ((1/2))^k −(3/2) =((1−((1/2))^(2^n +2) )/(1/2)) −(3/2)  =2−(2/2^(2^n +2) )−(3/2) =(1/2)−(1/2^(2^n +1) ) ⇒  2^n −(1/2)−(1/2^(2^n +1) )≤Σ_(k=1) ^2^n   cos((1/2^k ))≤2^n  ⇒  1−(1/2^(n+1) )−(1/(2^(2^n +1) .2^n ))≤(1/2^n ) Σ_(k=1) ^2^n  cos((1/2^k ))≤1 ⇒  lim_(n→+∞)  (1/2^n )Σ_(k=1) ^2^n  cos((1/2^k )) =1

cosx=1x22+x44!+...1x22cosx1112(12k)cos(12k)1k=12n(112k+1)k=12ncos(12k)2n2nk=12n12k+1k=12ncos(12k)2nbutk=12n12k+1=k=22n+112k=k=02n+1(12)k32=1(12)2n+21232=2222n+232=12122n+12n12122n+1k=12ncos(12k)2n112n+1122n+1.2n12nk=12ncos(12k)1limn+12nk=12ncos(12k)=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com