Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 106391 by Ar Brandon last updated on 05/Aug/20

∫e^(2x^2 +x) dx

e2x2+xdx

Answered by Sarah85 last updated on 05/Aug/20

t=(√2)(x+(1/4)) ⇔ x=((√2)/2)t−(1/4) ⇒ dx=((√2)/2)dt  ((√2)/2)∫e^(t^2 −(1/8)) dt=((√2)/(2e^(1/8) ))∫e^t^2  dt=((√(2π))/(4e^(1/8) ))∫((2e^t^2  )/(√π))dt=  =((√(2π))/(4e^(1/8) ))erfi t =((√(2π))/(4e^(1/8) ))erfi ((√2)(x+(1/4))) +C

t=2(x+14)x=22t14dx=22dt22et218dt=22e1/8et2dt=2π4e1/82et2πdt==2π4e1/8erfit=2π4e1/8erfi(2(x+14))+C

Commented by Ar Brandon last updated on 05/Aug/20

Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com