Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 106409 by bemath last updated on 05/Aug/20

what is the number positive integral solutions  for xy = 72(x+y) ?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{positive}\:\mathrm{integral}\:\mathrm{solutions} \\ $$$$\mathrm{for}\:\mathrm{xy}\:=\:\mathrm{72}\left(\mathrm{x}+\mathrm{y}\right)\:? \\ $$

Answered by 1549442205PVT last updated on 05/Aug/20

We have   xy=72(x+y)⇔(x−72)(y−72)=72^2  (∗)  =(8.9)^2 =2^6 .3^4 .Hence (x−72)∣(2^6 .3^4 )  Since (2^6 .3^4 )has (6+1)(4+1)=35 positive  divisors,the given equation has 35  poitive integer solutions  Note 35 positive divisors of 72^2 =2^6 .3^4   are:{1,2,3,4,6, 8, 9, 12, 16, 18, 24, 27,32   48, 36,54, 64, 72, 81, 96, 108, 144, 162,  192,216,288 ,324,432, 576, 648, 864,  1296,1728,2592 ,5184}

$$\mathrm{We}\:\mathrm{have}\: \\ $$$$\mathrm{xy}=\mathrm{72}\left(\mathrm{x}+\mathrm{y}\right)\Leftrightarrow\left(\mathrm{x}−\mathrm{72}\right)\left(\mathrm{y}−\mathrm{72}\right)=\mathrm{72}^{\mathrm{2}} \:\left(\ast\right) \\ $$$$=\left(\mathrm{8}.\mathrm{9}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{6}} .\mathrm{3}^{\mathrm{4}} .\mathrm{Hence}\:\left(\mathrm{x}−\mathrm{72}\right)\mid\left(\mathrm{2}^{\mathrm{6}} .\mathrm{3}^{\mathrm{4}} \right) \\ $$$$\mathrm{Since}\:\left(\mathrm{2}^{\mathrm{6}} .\mathrm{3}^{\mathrm{4}} \right)\mathrm{has}\:\left(\mathrm{6}+\mathrm{1}\right)\left(\mathrm{4}+\mathrm{1}\right)=\mathrm{35}\:\mathrm{positive} \\ $$$$\mathrm{divisors},\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{35} \\ $$$$\mathrm{poitive}\:\mathrm{integer}\:\mathrm{solutions} \\ $$$$\mathrm{Note}\:\mathrm{35}\:\mathrm{positive}\:\mathrm{divisors}\:\mathrm{of}\:\mathrm{72}^{\mathrm{2}} =\mathrm{2}^{\mathrm{6}} .\mathrm{3}^{\mathrm{4}} \\ $$$$\boldsymbol{\mathrm{are}}:\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\:\mathrm{8},\:\mathrm{9},\:\mathrm{12},\:\mathrm{16},\:\mathrm{18},\:\mathrm{24},\:\mathrm{27},\mathrm{32}\:\right. \\ $$$$\mathrm{48},\:\mathrm{36},\mathrm{54},\:\mathrm{64},\:\mathrm{72},\:\mathrm{81},\:\mathrm{96},\:\mathrm{108},\:\mathrm{144},\:\mathrm{162}, \\ $$$$\mathrm{192},\mathrm{216},\mathrm{288}\:,\mathrm{324},\mathrm{432},\:\mathrm{576},\:\mathrm{648},\:\mathrm{864}, \\ $$$$\left.\mathrm{1296},\mathrm{1728},\mathrm{2592}\:,\mathrm{5184}\right\} \\ $$

Commented by Rasheed.Sindhi last updated on 05/Aug/20

xy=72(x+y)⇔(x−72)(y−72)=72^2  (∗)                                  ???

$$\mathrm{xy}=\mathrm{72}\left(\mathrm{x}+\mathrm{y}\right)\Leftrightarrow\left(\mathrm{x}−\mathrm{72}\right)\left(\mathrm{y}−\mathrm{72}\right)=\mathrm{72}^{\mathrm{2}} \:\left(\ast\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:??? \\ $$

Commented by bemath last updated on 05/Aug/20

xy=72x+72y adding both sides by 72^2   xy+72^2  = 72x+72y+72^2   xy−72x−72y+72^2  = 72^2   x(y−72)−72(y−72)=72^2   (y−72)(x−72)=72^2    sir

$$\mathrm{xy}=\mathrm{72x}+\mathrm{72y}\:\mathrm{adding}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{by}\:\mathrm{72}^{\mathrm{2}} \\ $$$$\mathrm{xy}+\mathrm{72}^{\mathrm{2}} \:=\:\mathrm{72x}+\mathrm{72y}+\mathrm{72}^{\mathrm{2}} \\ $$$$\mathrm{xy}−\mathrm{72x}−\mathrm{72y}+\mathrm{72}^{\mathrm{2}} \:=\:\mathrm{72}^{\mathrm{2}} \\ $$$$\mathrm{x}\left(\mathrm{y}−\mathrm{72}\right)−\mathrm{72}\left(\mathrm{y}−\mathrm{72}\right)=\mathrm{72}^{\mathrm{2}} \\ $$$$\left(\mathrm{y}−\mathrm{72}\right)\left(\mathrm{x}−\mathrm{72}\right)=\mathrm{72}^{\mathrm{2}} \: \\ $$$$\mathrm{sir}\: \\ $$

Commented by Rasheed.Sindhi last updated on 05/Aug/20

Thank you bemath sir!

$$\mathcal{T}{hank}\:{you}\:{bemath}\:{sir}! \\ $$

Commented by Rasheed.Sindhi last updated on 05/Aug/20

V. Nice sir 1549...

$${V}.\:{Nice}\:{sir}\:\mathrm{1549}... \\ $$

Answered by Rasheed.Sindhi last updated on 05/Aug/20

Wrong Approach  Solved for integral solutions._(−)   ^★ As the expression is symmetric  so if (a,b) satisfy, (b,a) also satisfy.  xy=72(x+y)⇒  x×(y/(x+y))=72  (x & (y/(x+y)) are divisors of 72 and  product of both is 72)   determinant ((x,(y/(x+y)),(=(y/(x+y))),),(1,(  72),(=(y/(1+y))),(y=((−72)/(71))∉Z)),(2,(   36),(=(y/(2+y))),(y=((−72)/(35))∉Z)),(3,(   24),(=(y/(3+y))),(y=((−72)/(23))∉Z)),(4,(  18),(=(y/(4+y))),(y=((−72)/(17))∉Z)),(6,(   12),(=(y/(6+y))),(y=((−72)/(11))∉Z)),(8,(     9),(=(y/(8+y))),(y=((−72)/8)=−9)),(9,(     8),(=(y/(9+y))),(y=((−72)/7)∉Z)),((12),(     6),(=(y/(12+y))),(y=((−72)/5)∉Z)),((18),(     4),(=(y/(18+y))),(y=((−72)/3)=−24)),((24),(     3),(=(y/(24+y))),(y=((−72)/2)=−36)),((36),(     2),(=(y/(36+y))),(y=((−72)/1)=−72)),((72),(     1),(=(y/(72+y))),(y=No value)))  (8,−9),(−9,8),(18,−24),(−24,18)  (24,−36),(−36,24),(36,−72),(−72,36)  8 integral solutions  Ans:  No positive integral solution.

$${Wrong}\:{Approach} \\ $$$$\underset{−} {{Solved}\:{for}\:\boldsymbol{{integral}}\:\boldsymbol{{solutions}}.} \\ $$$$\:^{\bigstar} {As}\:{the}\:{expression}\:{is}\:{symmetric} \\ $$$${so}\:{if}\:\left({a},{b}\right)\:{satisfy},\:\left({b},{a}\right)\:{also}\:{satisfy}. \\ $$$${xy}=\mathrm{72}\left({x}+{y}\right)\Rightarrow \\ $$$${x}×\frac{{y}}{{x}+{y}}=\mathrm{72} \\ $$$$\left({x}\:\&\:\frac{{y}}{{x}+{y}}\:{are}\:{divisors}\:{of}\:\mathrm{72}\:{and}\right. \\ $$$$\left.{product}\:{of}\:{both}\:{is}\:\mathrm{72}\right) \\ $$$$\begin{vmatrix}{{x}}&{\frac{{y}}{{x}+{y}}}&{=\frac{{y}}{{x}+{y}}}&{}\\{\mathrm{1}}&{\:\:\mathrm{72}}&{=\frac{{y}}{\mathrm{1}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{71}}\notin\mathbb{Z}}\\{\mathrm{2}}&{\:\:\:\mathrm{36}}&{=\frac{{y}}{\mathrm{2}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{35}}\notin\mathbb{Z}}\\{\mathrm{3}}&{\:\:\:\mathrm{24}}&{=\frac{{y}}{\mathrm{3}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{23}}\notin\mathbb{Z}}\\{\mathrm{4}}&{\:\:\mathrm{18}}&{=\frac{{y}}{\mathrm{4}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{17}}\notin\mathbb{Z}}\\{\mathrm{6}}&{\:\:\:\mathrm{12}}&{=\frac{{y}}{\mathrm{6}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{11}}\notin\mathbb{Z}}\\{\mathrm{8}}&{\:\:\:\:\:\mathrm{9}}&{=\frac{{y}}{\mathrm{8}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{8}}=−\mathrm{9}}\\{\mathrm{9}}&{\:\:\:\:\:\mathrm{8}}&{=\frac{{y}}{\mathrm{9}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{7}}\notin\mathbb{Z}}\\{\mathrm{12}}&{\:\:\:\:\:\mathrm{6}}&{=\frac{{y}}{\mathrm{12}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{5}}\notin\mathbb{Z}}\\{\mathrm{18}}&{\:\:\:\:\:\mathrm{4}}&{=\frac{{y}}{\mathrm{18}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{3}}=−\mathrm{24}}\\{\mathrm{24}}&{\:\:\:\:\:\mathrm{3}}&{=\frac{{y}}{\mathrm{24}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{2}}=−\mathrm{36}}\\{\mathrm{36}}&{\:\:\:\:\:\mathrm{2}}&{=\frac{{y}}{\mathrm{36}+{y}}}&{{y}=\frac{−\mathrm{72}}{\mathrm{1}}=−\mathrm{72}}\\{\mathrm{72}}&{\:\:\:\:\:\mathrm{1}}&{=\frac{{y}}{\mathrm{72}+{y}}}&{{y}={No}\:{value}}\end{vmatrix} \\ $$$$\left(\mathrm{8},−\mathrm{9}\right),\left(−\mathrm{9},\mathrm{8}\right),\left(\mathrm{18},−\mathrm{24}\right),\left(−\mathrm{24},\mathrm{18}\right) \\ $$$$\left(\mathrm{24},−\mathrm{36}\right),\left(−\mathrm{36},\mathrm{24}\right),\left(\mathrm{36},−\mathrm{72}\right),\left(−\mathrm{72},\mathrm{36}\right) \\ $$$$\mathrm{8}\:{integral}\:{solutions} \\ $$$${Ans}: \\ $$$${No}\:{positive}\:{integral}\:{solution}. \\ $$

Commented by Her_Majesty last updated on 05/Aug/20

you are wrong  xy=72(x+y) ⇒ y=((72x)/(x−72))  if we look for x≤y and x, y>0 ⇒ 72<x≤144  x∈{73, 74, 75, 76, 78, 80, 81, 84, 88, 90, 96, 99, 104, 108, 120, 126, 136, 144}  ⇒ 35 solutions    y=((72x)/(x−72))  x=72+n  y=((72(n+72))/n) ⇒ n∣72∨n∣(n+72)

$${you}\:{are}\:{wrong} \\ $$$${xy}=\mathrm{72}\left({x}+{y}\right)\:\Rightarrow\:{y}=\frac{\mathrm{72}{x}}{{x}−\mathrm{72}} \\ $$$${if}\:{we}\:{look}\:{for}\:{x}\leqslant{y}\:{and}\:{x},\:{y}>\mathrm{0}\:\Rightarrow\:\mathrm{72}<{x}\leqslant\mathrm{144} \\ $$$${x}\in\left\{\mathrm{73},\:\mathrm{74},\:\mathrm{75},\:\mathrm{76},\:\mathrm{78},\:\mathrm{80},\:\mathrm{81},\:\mathrm{84},\:\mathrm{88},\:\mathrm{90},\:\mathrm{96},\:\mathrm{99},\:\mathrm{104},\:\mathrm{108},\:\mathrm{120},\:\mathrm{126},\:\mathrm{136},\:\mathrm{144}\right\} \\ $$$$\Rightarrow\:\mathrm{35}\:{solutions} \\ $$$$ \\ $$$${y}=\frac{\mathrm{72}{x}}{{x}−\mathrm{72}} \\ $$$${x}=\mathrm{72}+{n} \\ $$$${y}=\frac{\mathrm{72}\left({n}+\mathrm{72}\right)}{{n}}\:\Rightarrow\:{n}\mid\mathrm{72}\vee{n}\mid\left({n}+\mathrm{72}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 05/Aug/20

Thanks madam! Now I  recognized my logical error.  The answer is not editable but  it′s completely discardable!

$$\mathcal{T}{hanks}\:{madam}!\:{Now}\:{I} \\ $$$${recognized}\:{my}\:\boldsymbol{{logical}}\:\boldsymbol{{error}}. \\ $$$${The}\:{answer}\:{is}\:{not}\:{editable}\:{but} \\ $$$${it}'{s}\:{completely}\:{discardable}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com