Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 106444 by mathdave last updated on 05/Aug/20

Answered by nimnim last updated on 05/Aug/20

LHS: 3tan^(−1) (2)+tan^(−1) ((9/(13)))  = π+tan(((6−8)/(1−12)))+tan^(−1) ((9/(13)))       (as 2>(1/(√3)))  =π+tan^1 ((2/(11)))+tan^(−1) ((9/(13)))  =π+tan^(−1) ((((2/(11))+(9/(13)))/(1−((2×9)/(11×13)))))=π+tan^(−1) (((26+99)/(143−18)))  =π+tan^(−1) (1)=π+(π/4)  =((5π)/4) (RHS).

LHS:3tan1(2)+tan1(913)=π+tan(68112)+tan1(913)(as2>13)=π+tan1(211)+tan1(913)=π+tan1(211+91312×911×13)=π+tan1(26+9914318)=π+tan1(1)=π+π4=5π4(RHS).

Commented by mathdave last updated on 05/Aug/20

thank

thank

Commented by mathdave last updated on 05/Aug/20

hasfor me i set β=3tan^(−1) (2)   then  2=tan^(−1) ((3/β))  how did u get  3tan^(−1) (2)=π+tan^(−1) (((6−8)/(1−12)))  is there any formular or rule that guide this  pls i need ur explanation

hasformeisetβ=3tan1(2)then2=tan1(3β)howdiduget3tan1(2)=π+tan1(68112)isthereanyformularorrulethatguidethisplsineedurexplanation

Commented by mathdave last updated on 05/Aug/20

sorry  is  tan^(−1) ((β/3))   not   tan^(−1) ((3/β))

sorryistan1(β3)nottan1(3β)

Commented by nimnim last updated on 05/Aug/20

we have a formulae:  3tan^(−1) x= { ((           tan^(−1) (((3x−x^3 )/(1−3x^2 ))), if −(1/(√3))<x<(1/(√3)))),((    π+tan^(−1) (((3x−x^3 )/(1−3x^2 ))), if x>(1/(√3)))),((−π+tan^(−1) (((3x−x^3 )/(1−3x^2 ))), if x<−(1/(√3)))) :}

wehaveaformulae:3tan1x={tan1(3xx313x2),if13<x<13π+tan1(3xx313x2),ifx>13π+tan1(3xx313x2),ifx<13

Commented by mathdave last updated on 05/Aug/20

thank so much but  wait  oo incase if we re  now given  5tan^(−1) (3) hw can we set formular for  ds .i really wanna kwn more fact on ds

thanksomuchbutwaitooincaseifwerenowgiven5tan1(3)hwcanwesetformularfords.ireallywannakwnmorefactonds

Terms of Service

Privacy Policy

Contact: info@tinkutara.com