Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 106479 by mohammad17 last updated on 05/Aug/20

Answered by Rio Michael last updated on 05/Aug/20

c. Let  S = a + ar + ar^2  + ...+ ar^(n−1)  ....(i)     now rS = ra + ar^2  + ar^3  +...+ar^n .....(ii)  S−rS = a−ar^n   ⇒ S(1−r) = a(1−r^n )  ⇒ S = ((a(1−r^n ))/(1−r))   for  ∣r∣ < 1

$$\mathrm{c}.\:\mathrm{Let}\:\:{S}\:=\:{a}\:+\:{ar}\:+\:{ar}^{\mathrm{2}} \:+\:...+\:{ar}^{{n}−\mathrm{1}} \:....\left({i}\right) \\ $$$$\:\:\:\mathrm{now}\:{rS}\:=\:{ra}\:+\:{ar}^{\mathrm{2}} \:+\:{ar}^{\mathrm{3}} \:+...+{ar}^{{n}} .....\left({ii}\right) \\ $$$${S}−{rS}\:=\:{a}−{ar}^{{n}} \\ $$$$\Rightarrow\:{S}\left(\mathrm{1}−{r}\right)\:=\:{a}\left(\mathrm{1}−{r}^{{n}} \right) \\ $$$$\Rightarrow\:{S}\:=\:\frac{{a}\left(\mathrm{1}−{r}^{{n}} \right)}{\mathrm{1}−{r}}\:\:\:\mathrm{for}\:\:\mid{r}\mid\:<\:\mathrm{1} \\ $$

Answered by Rio Michael last updated on 05/Aug/20

b.  let u_n  = {n^2 }  u_(n+1)  = (n+1)^2  = n^2  + 2n + 1  u_(n+1) −u_n  = n^2  +2n + 1 −n^(2 )  = 2n + 1  ∀ n ∈ N,  2n + 1 > 0  hence  u_(n+1)  >u_n   thus u_n  is monotonically increasing.  let n <<1 but n ∈ N , n^2  → 0  hence n is monotonically decreasing

$$\mathrm{b}.\:\:\mathrm{let}\:{u}_{{n}} \:=\:\left\{{n}^{\mathrm{2}} \right\} \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:=\:{n}^{\mathrm{2}} \:+\:\mathrm{2}{n}\:+\:\mathrm{1} \\ $$$${u}_{{n}+\mathrm{1}} −{u}_{{n}} \:=\:{n}^{\mathrm{2}} \:+\mathrm{2}{n}\:+\:\mathrm{1}\:−{n}^{\mathrm{2}\:} \:=\:\mathrm{2}{n}\:+\:\mathrm{1} \\ $$$$\forall\:{n}\:\in\:\mathbb{N},\:\:\mathrm{2}{n}\:+\:\mathrm{1}\:>\:\mathrm{0}\:\:\mathrm{hence}\:\:{u}_{{n}+\mathrm{1}} \:>{u}_{{n}} \\ $$$$\mathrm{thus}\:{u}_{{n}} \:\mathrm{is}\:\mathrm{monotonically}\:\mathrm{increasing}. \\ $$$$\mathrm{let}\:{n}\:<<\mathrm{1}\:\mathrm{but}\:{n}\:\in\:\mathbb{N}\:,\:{n}^{\mathrm{2}} \:\rightarrow\:\mathrm{0} \\ $$$$\mathrm{hence}\:{n}\:\mathrm{is}\:\mathrm{monotonically}\:\mathrm{decreasing} \\ $$

Answered by Rio Michael last updated on 05/Aug/20

a.  let u_n  = {(1 + (5/n))^n }_(n=1) ^∞   If lim_(n→∞)  u_n  = L  , L ∈ R ⇒ u_n   converges otherwise  it is divergent.  lim_(n→∞)  (1 + (5/n))^n  = e^5   you need proof? here is it  let (5/n) = (1/m) as n →∞, m → ∞  ⇒ 5m = n  lim_(n→∞)  (1 + (5/n))^n  = lim_(m→∞)  [(1 + (1/m))^m ]^5 = e^5   ⇒ u_n  is convergnt

$$\mathrm{a}.\:\:\mathrm{let}\:{u}_{{n}} \:=\:\left\{\left(\mathrm{1}\:+\:\frac{\mathrm{5}}{{n}}\right)^{{n}} \right\}_{{n}=\mathrm{1}} ^{\infty} \\ $$$$\mathrm{If}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=\:{L}\:\:,\:{L}\:\in\:\mathbb{R}\:\Rightarrow\:{u}_{{n}} \:\:\mathrm{converges}\:\mathrm{otherwise} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{divergent}. \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{5}}{{n}}\right)^{{n}} \:=\:{e}^{\mathrm{5}} \\ $$$$\mathrm{you}\:\mathrm{need}\:\mathrm{proof}?\:\mathrm{here}\:\mathrm{is}\:\mathrm{it} \\ $$$$\mathrm{let}\:\frac{\mathrm{5}}{{n}}\:=\:\frac{\mathrm{1}}{{m}}\:\mathrm{as}\:{n}\:\rightarrow\infty,\:{m}\:\rightarrow\:\infty \\ $$$$\Rightarrow\:\mathrm{5}{m}\:=\:{n} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{5}}{{n}}\right)^{{n}} \:=\:\underset{{m}\rightarrow\infty} {\mathrm{lim}}\:\left[\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{m}}\right)^{{m}} \right]^{\mathrm{5}} =\:{e}^{\mathrm{5}} \\ $$$$\Rightarrow\:{u}_{{n}} \:\mathrm{is}\:\mathrm{convergnt} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com