All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 106479 by mohammad17 last updated on 05/Aug/20
Answered by Rio Michael last updated on 05/Aug/20
c.LetS=a+ar+ar2+...+arn−1....(i)nowrS=ra+ar2+ar3+...+arn.....(ii)S−rS=a−arn⇒S(1−r)=a(1−rn)⇒S=a(1−rn)1−rfor∣r∣<1
b.letun={n2}un+1=(n+1)2=n2+2n+1un+1−un=n2+2n+1−n2=2n+1∀n∈N,2n+1>0henceun+1>unthusunismonotonicallyincreasing.letn<<1butn∈N,n2→0hencenismonotonicallydecreasing
a.letun={(1+5n)n}n=1∞Iflimn→∞un=L,L∈R⇒unconvergesotherwiseitisdivergent.limn→∞(1+5n)n=e5youneedproof?hereisitlet5n=1masn→∞,m→∞⇒5m=nlimn→∞(1+5n)n=limm→∞[(1+1m)m]5=e5⇒unisconvergnt
Terms of Service
Privacy Policy
Contact: info@tinkutara.com