Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 106591 by mathdave last updated on 06/Aug/20

Commented by Her_Majesty last updated on 06/Aug/20

∞ is not a number  lim_(x→∞) x! ≠(√(2π))

$$\infty\:{is}\:{not}\:{a}\:{number} \\ $$$$\underset{{x}\rightarrow\infty} {{lim}x}!\:\neq\sqrt{\mathrm{2}\pi} \\ $$

Commented by mathdave last updated on 06/Aug/20

yes but can b prove

$${yes}\:{but}\:{can}\:{b}\:{prove} \\ $$

Commented by Her_Majesty last updated on 06/Aug/20

it′s simply wrong.  x!≈((x/e))^x (√(2πx)) for x→+∞ we get x!→+∞

$${it}'{s}\:{simply}\:{wrong}. \\ $$$${x}!\approx\left(\frac{{x}}{\mathrm{e}}\right)^{{x}} \sqrt{\mathrm{2}\pi{x}}\:{for}\:{x}\rightarrow+\infty\:{we}\:{get}\:{x}!\rightarrow+\infty \\ $$

Commented by Her_Majesty last updated on 07/Aug/20

I′m not a Sir beware!!! I′m a Lady

$${I}'{m}\:{not}\:{a}\:{Sir}\:\mathrm{beware}!!!\:{I}'{m}\:{a}\:{Lady} \\ $$

Commented by Ar Brandon last updated on 07/Aug/20

Lol, don't bother yourself Sir. I know you wouldn't like to draw the others' attention��

Commented by Her_Majesty last updated on 07/Aug/20

what are you talking about?

$${what}\:{are}\:{you}\:{talking}\:{about}? \\ $$

Commented by Ar Brandon last updated on 07/Aug/20

Deleted��

Answered by Ar Brandon last updated on 06/Aug/20

A_n =lim_(n→∞) n!⇒lnA_n =lim_(n→∞) ln(n!)=lim_(n→∞) lnΠ_(k=0) ^(n−1) (n−k)  lnA_n =lim_(n→∞) Σ_(k=0) ^(n−1) ln(n−k)=lim_(n→∞) n∙(1/n)Σ_(k=0) ^(n−1) ln(n(1−(k/n)))             =lim_(n→∞) n∫_0 ^1 ln(n(1−x))dx=lim_(n→∞) n∫_0 ^1 ln(tn)dt             =lim_(n→∞) {tn(ln(tn)−1)}_0 ^1 =lim_(n→∞) {n(ln(n)−1}=+∞  A_n =e^(+∞) ≠(√(2π))    I feel there maybe a problem with this question.

$$\mathrm{A}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}!\Rightarrow\mathrm{lnA}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}ln}\left(\mathrm{n}!\right)=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}ln}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\left(\mathrm{n}−\mathrm{k}\right) \\ $$$$\mathrm{lnA}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{ln}\left(\mathrm{n}−\mathrm{k}\right)=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}\centerdot\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{ln}\left(\mathrm{n}\left(\mathrm{1}−\frac{\mathrm{k}}{\mathrm{n}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{n}\left(\mathrm{1}−\mathrm{x}\right)\right)\mathrm{dx}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{tn}\right)\mathrm{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left\{\mathrm{tn}\left(\mathrm{ln}\left(\mathrm{tn}\right)−\mathrm{1}\right)\right\}_{\mathrm{0}} ^{\mathrm{1}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left\{\mathrm{n}\left(\mathrm{ln}\left(\mathrm{n}\right)−\mathrm{1}\right\}=+\infty\right. \\ $$$$\mathrm{A}_{\mathrm{n}} =\mathrm{e}^{+\infty} \neq\sqrt{\mathrm{2}\pi} \\ $$$$ \\ $$$${I}\:{feel}\:{there}\:{maybe}\:{a}\:{problem}\:{with}\:{this}\:{question}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com