Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 106695 by bobhans last updated on 06/Aug/20

    #bobhans#  3^x −2^(x+1)  ≤ (√(2.9^x −10.6^x +2^(2x+3) ))  find the solution set

$$\:\:\:\:#\mathrm{bobhans}# \\ $$$$\mathrm{3}^{\mathrm{x}} −\mathrm{2}^{\mathrm{x}+\mathrm{1}} \:\leqslant\:\sqrt{\mathrm{2}.\mathrm{9}^{\mathrm{x}} −\mathrm{10}.\mathrm{6}^{\mathrm{x}} +\mathrm{2}^{\mathrm{2x}+\mathrm{3}} } \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set} \\ $$

Answered by bemath last updated on 06/Aug/20

        ^(@bemath@)   ((3^x −2.2^x )/2^x ) ≤ ((√(2.9^x −10.6^x +8.(2^x )^2 ))/2^x )  ((3/2))^x −2 ≤ (√(2((3/2))^(2x) −10((3/2))^x +8))  set ((3/2))^x = t   t−2 ≤ (√(2(t−1)(t−4)))  defined on (t−1)(t−4)≥0  ⇒ t ≤1 ∪ t ≥ 4...(1)  squaring both sides  t^2 −4t+4 ≤ 2t^2 −10t+8  −t^2 +6t−4 ≤ 0 ; t^2 −6t+4 ≥ 0  (t−3)^2 −5≥0  t≤3−(√5) ∪t ≥ 3+(√5) ...(2)  from (1)∩(2) we get → { ((t ≤1)),((t≥3+(√5))) :}   { ((((3/2))^x ≤1 ⇒ x ≤ 0)),((((3/2))^x ≥ 3+(√5) ⇒x ≥log _(((3/2))) (3+(√5)) )) :}  the solution set is x∈(−∞,0 ] ∪  [ log _(((3/2))) (3+(√5)) ,∞ )

$$\:\:\:\:\:\:\:\overset{@\mathrm{bemath}@} {\:} \\ $$$$\frac{\mathrm{3}^{\mathrm{x}} −\mathrm{2}.\mathrm{2}^{\mathrm{x}} }{\mathrm{2}^{\mathrm{x}} }\:\leqslant\:\frac{\sqrt{\mathrm{2}.\mathrm{9}^{\mathrm{x}} −\mathrm{10}.\mathrm{6}^{\mathrm{x}} +\mathrm{8}.\left(\mathrm{2}^{\mathrm{x}} \right)^{\mathrm{2}} }}{\mathrm{2}^{\mathrm{x}} } \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{x}} −\mathrm{2}\:\leqslant\:\sqrt{\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2x}} −\mathrm{10}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{x}} +\mathrm{8}} \\ $$$$\mathrm{set}\:\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{x}} =\:\mathrm{t}\: \\ $$$$\mathrm{t}−\mathrm{2}\:\leqslant\:\sqrt{\mathrm{2}\left(\mathrm{t}−\mathrm{1}\right)\left(\mathrm{t}−\mathrm{4}\right)} \\ $$$$\mathrm{defined}\:\mathrm{on}\:\left(\mathrm{t}−\mathrm{1}\right)\left(\mathrm{t}−\mathrm{4}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{t}\:\leqslant\mathrm{1}\:\cup\:\mathrm{t}\:\geqslant\:\mathrm{4}...\left(\mathrm{1}\right) \\ $$$$\mathrm{squaring}\:\mathrm{both}\:\mathrm{sides} \\ $$$$\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{4}\:\leqslant\:\mathrm{2t}^{\mathrm{2}} −\mathrm{10t}+\mathrm{8} \\ $$$$−\mathrm{t}^{\mathrm{2}} +\mathrm{6t}−\mathrm{4}\:\leqslant\:\mathrm{0}\:;\:\mathrm{t}^{\mathrm{2}} −\mathrm{6t}+\mathrm{4}\:\geqslant\:\mathrm{0} \\ $$$$\left(\mathrm{t}−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{5}\geqslant\mathrm{0} \\ $$$$\mathrm{t}\leqslant\mathrm{3}−\sqrt{\mathrm{5}}\:\cup\mathrm{t}\:\geqslant\:\mathrm{3}+\sqrt{\mathrm{5}}\:...\left(\mathrm{2}\right) \\ $$$$\mathrm{from}\:\left(\mathrm{1}\right)\cap\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{get}\:\rightarrow\begin{cases}{\mathrm{t}\:\leqslant\mathrm{1}}\\{\mathrm{t}\geqslant\mathrm{3}+\sqrt{\mathrm{5}}}\end{cases} \\ $$$$\begin{cases}{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{x}} \leqslant\mathrm{1}\:\Rightarrow\:\mathrm{x}\:\leqslant\:\mathrm{0}}\\{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{x}} \geqslant\:\mathrm{3}+\sqrt{\mathrm{5}}\:\Rightarrow\mathrm{x}\:\geqslant\mathrm{log}\:_{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)} \left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\:}\end{cases} \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{is}\:\mathrm{x}\in\left(−\infty,\mathrm{0}\:\right]\:\cup \\ $$$$\left[\:\mathrm{log}\:_{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)} \left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\:,\infty\:\right)\: \\ $$$$ \\ $$

Commented by bobhans last updated on 06/Aug/20

afdollll

$$\mathrm{afdollll} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com